Cardiovascular system = blood vessels and heart.

Fig. 13.9

Functions of circulatory system.

1.
2.
3.

Constituents of Blood

Fig. 13.1
Blood Components

- Plasma
 - Organic and inorganic substances
 - Bilirubin
 - Albumins, globulins and fibrinogen
- Erthythrocytes (RBCs)
- Leukocytes (WBCs)
- Platelets

Formed elements

You will not be tested on material from Hematopoiesis through Dissolution of clots (pp. 370 - 377).

- However it makes for very interesting reading.
Buffer Systems

- Provide or remove \(H^+ \) and stabilize the pH.
- Include weak acids that can donate \(H^+ \) and weak bases that can absorb \(H^+ \).
- \(HCO_3^- \) is the most important ECF buffer.
- \(H^+ + HC0_3^- \rightarrow H_2C0_3 \)

Acid Base Disorders

- Respiratory acidosis:
 - Accumulation of \(CO_2 \).
 - pH decreases.
- Respiratory alkalosis:
 - Excessive loss of \(CO_2 \).
 - pH increases.

- Metabolic acidosis:
 - Gain of fixed acid or loss of \(HCO_3^- \).
 - Plasma \(HCO_3^- \) decreases.
 - pH decreases.
- Metabolic alkalosis:
 - Loss of fixed acid or gain of \(HCO_3^- \).
 - Plasma \(HCO_3^- \) increases.
 - pH increases.
pH

- Normal pH is obtained when the ratio of HCO$_3^-$ to CO$_2$ is 20:1.
- Henderson-Hasselbalch equation:
 \[\text{pH} = 6.1 + \log \frac{[\text{HCO}_3^-]}{[\text{CO}_2]} \]
Cardiac Cycle

- Refers to the repeating pattern of contraction and relaxation of the heart.
- Systole:
 - Phase of contraction.
- Diastole:
 - Phase of relaxation.

Fig. 13.10
ECG

See Fig. 13.21

Cardiac Cycle

- Step 1: Isovolumetric contraction.
- QRS just occurred.
- Contraction of the ventricle causes ventricular pressure to rise above atrial pressure.
 - AV valves close.
- Ventricular pressure is less than aortic pressure.
 - Semilunar valves are closed.
- Volume of blood in ventricle is EDV.
Cardiac Cycle

- **Step 2: Ejection.**
 - Contraction of the ventricle causes ventricular pressure to rise above aortic pressure.
 - Semilunar valves open.
 - Ventricular pressure is greater than atrial pressure.
 - AV valves are closed.
 - Volume of blood ejected: SV.

Cardiac Cycle

- **Step 3: T wave occurs.**
- Ventricular pressure drops below aortic pressure.
- **Step 4: Isovolumetric relaxation.**
 - Back pressure causes semilunar valves to close.
 - AV valves are still closed.
 - Volume of blood in the ventricle: ESV.

Cardiac Cycle

- **Step 5: Rapid filling of ventricles.**
 - Ventricular pressure decreases below atrial pressure.
 - AV valves open.
 - Rapid ventricular filling occurs.
- **Step 6: Atrial systole.**
 - P wave occurs.
 - Atrial contraction.
 - Push 10-30% more blood into the ventricle.
Heart Sounds

- Closing of the AV and semilunar valves.
- \(\text{Lub} \) (first sound):
 - Produced by closing of the AV valves during isovolumetric contraction.
- \(\text{Dub} \) (second sound):
 - Produced by closing of the semilunar valves when pressure in the ventricles falls below pressure in the arteries.

Heart Murmurs

- Abnormal heart sounds produced by abnormal patterns of blood flow in the heart.
- Defective heart valves:
 - Valves become damaged by antibodies made in response to an infection.
- Mitral stenosis:
 - Mitral valve becomes thickened and calcified.
 - Impair blood flow from left atrium to left ventricle.
Heart Murmurs

- **Incompetent valves:**
 - Valves do not close properly.
 - Murmurs may be produced as blood regurgitates through the valve flaps.

- **Septal defects:**
 - Holes in septum between the left and right sides of the heart.
 - Blood passes from left to right.

Abnormal Patterns of Blood Flow Due to Septal Defects

![Diagram showing abnormal blood flow due to septal defects](Fig. 13.15)

- [Diagram](Fig. 13.15)

Blood Flow through a Patent (Open) Ductus Arteriosus

![Diagram showing blood flow through the ductus arteriosus](Fig. 13.16)

Fig. 13.16
Electrical Activity of the Heart

• Automaticity: automatic nature of the heartbeat.
• SA node:
 – Demonstrates spontaneous depolarization.
 – Functions as the pacemaker.
 – Does not maintain a stable resting membrane potential.
 – Membrane depolarizes from –60 to –40 mV.

Pacemaker Potential

• –40 mV is threshold for producing AP.
• Spontaneous diffusion caused by diffusion of Ca++ through slow Ca++ channels.
Depolarization

- Depolarization:
 - VG fast Ca\(^{++}\) channels open.
 - Ca\(^{++}\) diffuses inward.
 - Opening of VG Na\(^{+}\) channels may also contribute to the upshoot phase of the AP.

- Repolarization:
 - VG K\(^{+}\) channels open.
 - K\(^{+}\) diffuses outward.

Pacemaker and Action Potentials in the SA Node

![Diagram of Pacemaker and Action Potentials in the SA Node]

Fig. 13.17

Cardiac Muscle AP

- Resting membrane potential of ~90 mV.
- SA node AP spreads to myocardial cells.
- When myocardial cell reaches threshold, the cell depolarizes.
- Rapid upshoot occurs:
 - VG Na\(^{+}\) channels open.
 - Inward diffusion of Na\(^{+}\).
Cardiac Muscle AP

- **Plateau phase:**
 - Rapid reversal in membrane polarity to \(-15\) mV.
 - VG Ca\(^{++}\) channels open.
 - Slow inward flow of Ca\(^{++}\) balances outflow of K\(^+\).
- **Rapid repolarization:**
 - VG K\(^+\) channels open.
 - Rapid outward diffusion of K\(^+\).

Action Potential in a Myocardial Cell from the Ventricles

Fig. 13.18

Conducting Tissues of the Heart

- APs spread through myocardial cells through gap junctions.
- Impulses cannot spread to ventricles directly because of fibrous tissue.
- Conduction pathway:
 - SA node.
 - AV node.
 - Bundle of His.
 - Purkinje fibers.

Conduction System of the Heart

Fig. 13.19
Conduction of Impulse

- AP from SA node spread quickly at rate of 0.8 – 1.0 m/sec.
- Time delay occurs as impulses pass through AV node.
 - Slow conduction of 0.03 – 0.05 m/sec.
- Impulse conduction increases as spread to Purkinje fibers at a velocity of 5.0 m/sec.
- Ventricular contraction begins 0.1 – 0.2 sec. After contraction of the atria.

Cardiac excitation

Atrial excitation
- Begins
- Complete

Ventricular excitation
- Begins
- Complete

Fig not in book

Membrane potential of ventricular muscle

Figure not in book
Refractory Periods

- Heart contracts as one single unit.
- Contraction lasts almost 300 msec.
- Refractory periods last almost as long as contraction.
- Summation cannot occur.

Figure 13.20
EKG (ECG)

- The body is a good conductor of electricity.
 - Due to the high concentration of ions that move in response to potential differences.
- Electrocardiogram:
 - Measure of the electrical activity of the heart per unit time.
 - Does NOT measure the flow of blood through the heart.

EKG Leads

- 2 types of leads:
- Bipolar leads:
 - Record voltage between electrodes placed on wrists and legs.
 - The right leg is ground.
- Unipolar leads:
 - Placed on right arm, left arm, left leg and chest.
 - Allow to obtain a 3 dimensional perspective of the heart.

Fig. 13.22

EKG

Fig. 13.21
ECG

- **P wave:**
 - Atrial depolarization.
- **QRS complex:**
 - Ventricular depolarization.
 - Atrial repolarization.
- **T wave:**
 - Ventricular repolarization.

Fig. 13.23

Typical electrocardiogram

Fig. 13.21

Events during cardiac cycle

Fig. not in book:
See fig. 13.24 in book.
Stroke volume

- Stroke volume
 - volume of blood ejected by each ventricle during each contraction.

- Force contraction affected by
 - Changes in end-diastolic volume
 - Changes in magnitude of sympathetic nervous input to the ventricles.
 - Afterload

Effects on stroke volume

Figure not in book