Cardiovascular system = blood vessels and heart.

Functions of circulatory system.

1.
2.
3.

Blood Components

- Plasma
 - Organic and inorganic substances
 - Bilirubin
 - Albumins, globulins and fibrinogen
- Erthyrocytes (RBCs)
- Leukocytes (WBCs)
- Platelets

You will not be tested on material from Hematopoiesis through Dissolution of clots (pp. 370 - 377).

- However it makes for very interesting reading.
Buffer Systems

- Provide or remove H⁺ and stabilize the pH.
- Include weak acids that can donate H⁺ and weak bases that can absorb H⁺.
- HCO₃⁻ is the most important ECF buffer.
- H⁺ + HCO₃⁻ → H₂CO₃

Acid Base Disorders

- Respiratory acidosis:
 - Accumulation of CO₂.
 - pH decreases.
- Respiratory alkalosis:
 - Excessive loss of CO₂.
 - pH increases.

Acid Base Disorders

- Metabolic acidosis:
 - Gain of fixed acid or loss of HCO₃⁻.
 - Plasma HCO₃⁻ decreases.
 - pH decreases.
- Metabolic alkalosis:
 - Loss of fixed acid or gain of HCO₃⁻.
 - Plasma HCO₃⁻ increases.
 - pH increases.

pH

- Normal pH is obtained when the ratio of HCO₃⁻ to CO₂ is 20:1.
- Henderson-Hasselbalch equation:
 \[pH = 6.1 + \log \frac{[HCO₃^-]}{[CO₂]} \]
Cardiac Cycle

- Refers to the repeating pattern of contraction and relaxation of the heart.
- Systole:
 - Phase of contraction.
- Diastole:
 - Phase of relaxation.

ECG

Electrocardiogram (ECG)

- Step 1: Isovolumetric contraction.
- QRS just occurred.
- Contraction of the ventricle causes ventricular pressure to rise above atrial pressure.
 - AV valves close.
- Ventricular pressure is less than aortic pressure.
 - Semilunar valves are closed.
- Volume of blood in ventricle is EDV.
Cardiac Cycle

• Step 2: Ejection.
 • Contraction of the ventricle causes ventricular pressure to rise above aortic pressure.
 – Semilunar valves open.
 • Ventricular pressure is greater than atrial pressure.
 – AV valves are closed.
 • Volume of blood ejected: SV.

• Step 3: T wave occurs.
 • Ventricular pressure drops below aortic pressure.

• Step 4: Isovolumetric relaxation.
 • Back pressure causes semilunar valves to close.
 – AV valves are still closed.
 • Volume of blood in the ventricle: ESV.

• Step 5: Rapid filling of ventricles.
 • Ventricular pressure decreases below atrial pressure.
 – AV valves open.
 • Rapid ventricular filling occurs.

• Step 6: Atrial systole.
 • P wave occurs.
 – Atrial contraction.
 – Push 10-30% more blood into the ventricle.

Heart Sounds

• Closing of the AV and semilunar valves.
• Lab (first sound):
 • Produced by closing of the AV valves during isovolumetric contraction.
• Dub (second sound):
 • Produced by closing of the semilunar valves when pressure in the ventricles falls below pressure in the arteries.

Heart Murmurs

• Abnormal heart sounds produced by abnormal patterns of blood flow in the heart.
• Defective heart valves:
 – Valves become damaged by antibodies made in response to an infection.
• Mitral stenosis:
 – Mitral valve becomes thickened and calcified.
 – Impair blood flow from left atrium to left ventricle.
Heart Murmurs

- Incompetent valves:
 - Valves do not close properly.
 - Murmurs may be produced as blood regurgitates through the valve flaps.
- Septal defects:
 - Holes in septum between the left and right sides of the heart.
 - Blood passes from left to right.

Abnormal Patterns of Blood Flow Due to Septal Defects

- Septal defect in atria
- Septal defect in ventricles

Left-to-right shunting of blood is shown by circled areas.

Fig. 13.15

Blood Flow through a Patent (Open) Ductus Arteriosus

Fig. 13.16

Conducting system of heart

- Superior vena cava
- Atrioventricular node
- Bundle of His
- Sinoatrial node
- Right bundle branch
- Purkinje fibers
- Left bundle branch

Fig not in book

Electrical Activity of the Heart

- Automaticity: automatic nature of the heartbeat.
- SA node:
 - Demonstrates spontaneous depolarization.
 - Functions as the pacemaker.
 - Does not maintain a stable resting membrane potential.
 - Membrane depolarizes from –60 to –40 mV.

Pacemaker Potential

- –40 mV is threshold for producing AP.
- Spontaneous diffusion caused by diffusion of Ca++ through slow Ca++ channels.
Depolarization

- Depolarization:
 - VG fast Ca2+ channels open.
 - Ca2+ diffuses inward.
 - Opening of VG Na+ channels may also contribute to the upshoot phase of the AP.

- Repolarization:
 - VG K+ channels open.
 - K+ diffuses outward.

Cardiac Muscle AP

- Resting membrane potential of \(-90\) mV.
- SA node AP spreads to myocardial cells.
- When myocardial cell reaches threshold, the cell depolarizes.
- Rapid upshoot occurs:
 - VG Na+ channels open.
 - Inward diffusion of Na+.

Cardiac Muscle AP

- Plateau phase:
 - Rapid reversal in membrane polarity to \(-15\) mV.
 - VG Ca2+ channels open.
 - Slow inward flow of Ca2+ balances outflow of K+.

- Rapid repolarization:
 - VG K+ channels open.
 - Rapid outward diffusion of K+.

Conducting Tissues of the Heart

- APs spread through myocardial cells through gap junctions.
- Impulses cannot spread to ventricles directly because of fibrous tissue.
- Conduction pathway:
 - SA node.
 - AV node.
 - Bundle of His.
 - Purkinje fibers.
Conduction of Impulse

- AP from SA node spread quickly at rate of 0.8 - 1.0 m/sec.
- Time delay occurs as impulses pass through AV node.
 - Slow conduction of 0.03 – 0.05 m/sec.
- Impulse conduction increases as spread to Purkinje fibers at a velocity of 5.0 m/sec.
- Ventricular contraction begins 0.1 – 0.2 sec. After contraction of the atria.

Cardiac excitation

Atrial excitation

Ventricular excitation

Fig not in book

Membrane potential of ventricular muscle

Relative permeability during action potential

Refractory Periods

- Heart contracts as one single unit.
- Contraction lasts almost 300 msec.
- Refractory periods last almost as long as contraction.
- Summation cannot occur.

Fig. 13.20
EKG (ECG)

- The body is a good conductor of electricity.
 - Due to the high concentration of ions that move in response to potential differences.
- Electrocardiogram:
 - Measure of the **electrical activity** of the heart per unit time.
 - Does **NOT measure** the flow of blood through the heart.

EKG Leads

- 2 types of leads:
 - Bipolar leads:
 - Record voltage between electrodes placed on wrists and legs.
 - Right leg is ground.
 - Unipolar leads:
 - Placed on right arm, left arm, left leg and chest.
 - Allow to obtain a 3 dimensional perspective of the heart.

ECG

![Electrocardiogram (ECG)](image1)

- P wave:
 - Atrial depolarization.
- QRS complex:
 - Ventricular depolarization.
 - Atrial repolarization.
- T wave:
 - Ventricular repolarization.

Events during cardiac cycle

![Events during cardiac cycle](image2)

- Heart sounds
- Aortic pressure
- Left atrial pressure
- Left ventricular pressure
- Left ventricular volume

![Typical electrocardiogram](image3)

- Membrane potential (mV)
- Ventricular action potential

![ECG Leads](image4)

- Electrocardiograph Leads
 - Right arm
 - Left arm
 - Right leg
 - Left leg
Stroke volume

- Stroke volume: volume of blood ejected by each ventricle during each contraction.
- Force contraction affected by:
 - Changes in end-diastolic volume
 - Changes in magnitude of sympathetic nervous input to the ventricles.
 - Afterload