Take-home Assignment

Due at beginning of lab, Oct. 6
Stolen from Dr. Pogozelski

Name \qquad
The following quantities are known:

$$
g=9.80 \mathrm{~m} / \mathrm{s}^{2} \pm 0.01 \mathrm{~m} / \mathrm{s}^{2} \quad r=8.0 \mathrm{~cm} \pm 0.1 \mathrm{~cm} \quad L=15.0 \mathrm{~cm} \pm 0.3 \mathrm{~cm}
$$

The units of some other symbols used below are: $t \rightarrow$ seconds, $h \rightarrow$ meters.

1. Find the derivatives indicated. For parts a) and b), also compute the derivative's value. For part d), first solve for a.

Example: $J=A+2 \pi r L-L^{2} \quad$ Derivative: $\frac{d J}{d L}=2 \pi r-2 L \quad$ Value: 20.265 cm
a) $V=\frac{4}{3} \pi r^{3}+\pi r^{2} L \quad$ Derivative: $\frac{\partial V}{\partial r}=\quad$ Value:
b) $V=\frac{4}{3} \pi r^{3}+\pi r^{2} L \quad$ Derivative: $\frac{\partial V}{\partial L}=\quad$ Value:
c) $a=\frac{\left(m_{2}-\mu_{k} m_{1}\right)}{m_{1}+m_{2}} g \quad$ Derivative: $\frac{\partial a}{\partial \mu_{k}}=$
d) $h=\frac{1}{2} a t^{2}$
$a=$
Derivative: $\frac{\partial a}{\partial t}=$
2. In the above expressions:
a) What are the units of A ?
b) What are the units of a ? \qquad
c) What are the units of V ? \qquad
d) What are the units of μ_{k} ? \qquad
e) What are the units of $\partial V / \partial r$? \qquad
f) What are the units of $\partial V / \partial L$?

NOTE: Given quantities from first side still apply...
3. You intend to compute the volume of a cylinder with hemispherical ends, the formula for which is $V=\frac{4}{3} \pi r^{3}+\pi r^{2} L$. Show your work.
a) What is the value of \bar{V} ?

For (b) and (c), you should have no calculus. Use the results of question 1.
b) What is the value of δV_{L} ?
c) What is the value of δV_{r} ?
d) What is the value of δV ?
e) Write the volume of this object using presentation format: $V=$
f) Which would be more effective for reducing the volume uncertainty, improving your measurement of r or your measurement of L ? Explain your choice in one sentence.

