Physics 124: Analytical Physics I Laboratory

Take-home Assignment

Due at beginning of lab, Oct. 6

Stolen from Dr. Pogozelski

Name

The following quantities are known:

$g = 9.80 \text{m/s}^2 \pm 0.01 \text{m/s}^2$	$r = 8.0 \text{ cm} \pm 0.1 \text{ cm}$	$L = 15.0$ cm ± 0.3 cm
The units of some other symbols used be	low are: $t \rightarrow$ seconds,	$h \rightarrow$ meters.

1. Find the derivatives indicated. For parts a) and b), also compute the derivative's value. For part d), first solve for *a*.

Example: $J = A + 2\pi rL - L^2$	Derivative:	$\frac{dJ}{dL} = 2\pi r - 2L$	V	alue:20.265 cm
a) $V = \frac{4}{3}\pi r^3 + \pi r^2 L$	Derivative:	$\frac{\partial V}{\partial r} =$	V	/alue:
b) $V = \frac{4}{3}\pi r^3 + \pi r^2 L$	Derivative:	$\frac{\partial V}{\partial L} =$	V	Value:
c) $a = \frac{(m_2 - \mu_k m_1)}{m_1 + m_2}g$	Derivative:	$\frac{\partial a}{\partial \mu_k} =$		
d) $h = \frac{1}{2}at^2$	<i>a</i> =		Derivative: $\frac{\partial a}{\partial t} =$	

2. In the above expressions:

- a) What are the units of *A*?_____
- b) What are the units of *a*?_____
- c) What are the units of *V*?_____
- d) What are the units of μ_k ?_____
- e) What are the units of $\partial V / \partial r$?
- f) What are the units of $\partial V/\partial L$?_____

NOTE: Given quantities from first side still apply...

3. You intend to compute the volume of a cylinder with hemispherical ends, the formula for which is $V = \frac{4}{3}\pi r^3 + \pi r^2 L$. Show your work.

a) What is the value of \overline{V} ?

For (b) and (c), you should have no calculus. Use the results of question 1. b) What is the value of δV_L ? c) What is the value of δV_r ?

d) What is the value of δV ?

e) Write the volume of this object using presentation format: V =_____

f) Which would be more effective for reducing the volume uncertainty, improving your measurement of r or your measurement of L? Explain your choice in one sentence.