Plastic rod w/ charge $Q_{p}=-20 \mu \mathrm{C}$
Glass rod w/ charge $\quad Q_{g}=+30 \mu \mathrm{C}$
Rub them together, then find that plastic rod still has $Q_{p}^{\prime}=-5 \mu \mathrm{C}$

What's Q_{g}^{\prime} ? (answer in $\mu \mathrm{C}$)

$$
\begin{aligned}
& Q_{\mathrm{net}}=Q_{p}+Q_{g}=+10 \mu \mathrm{C} \\
& Q_{g}^{\prime}=Q_{\mathrm{net}}-Q_{p}^{\prime}=15 \mu \mathrm{C}
\end{aligned}
$$

\#2
\#1
mass $m_{1}=40 \mathrm{~g} \quad$ mass $m_{2}=8 \mathrm{~g}$
charge $Q_{1}=+20 \mu \mathrm{C} \quad$ charge $Q_{2}=+32 \mu \mathrm{C}$

Separation $\mathrm{d}=10 \mathrm{~cm}$
What is the force on ball \#1?
(answer in N , positive means to the right)

$$
\begin{gathered}
|\mathbf{F}|=k \frac{Q_{1} Q_{2}}{r^{2}}=\left(9 E 9 \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}}\right) \frac{(32 \mu \mathrm{C})(20 \mu \mathrm{C})}{(0.1 \mathrm{~m})^{2}}=576 \mathrm{~N} \\
\text { TO THE LEFT! }
\end{gathered}
$$

What is the force on ball \#2?

Four small charged objects are in a square. $L=1 \mathrm{~m}$ and q $=1 \mathrm{mC}$. What force does the upper right object feel?

$$
\begin{aligned}
& \left|F_{1}\right|=k \cdot 6 q^{2} /(\sqrt{2} L)^{2}=k \cdot 3 q^{2} / L^{2} \\
& \left|F_{2}\right|=k \cdot 8 q^{2} / L^{2} \\
& \left|F_{3}\right|=k \cdot 2 q^{2} / L^{2} \\
& F_{1 x}=F_{1 y}=\frac{\left|F_{1}\right|}{\sqrt{2}} \quad\left(\text { angle is } 45^{\circ}\right) \\
& F_{x}=\left(\frac{3}{\sqrt{2}}-2\right) k q^{2} / L^{2}=1090 \mathrm{~N} \\
& F_{y}=\left(\frac{3}{\sqrt{2}}-8\right) k q^{2} / L^{2}=-52850 \mathrm{~N}
\end{aligned}
$$

Two charged balls hang from strings of length L from a common hanging point. They have the same mass m and the same charge q. How far apart are they (in equilibrium)?
Give the answer as an equation for x.
(HINT: Use the small angle approximation $\theta \approx \sin \theta \approx \tan \theta$)

$$
\begin{gathered}
T \sin \theta=F_{E}=k \frac{q q}{x^{2}} \\
T \cos \theta=m g \\
\frac{\frac{1}{2} x}{L} \approx \tan \theta=\frac{k q^{2}}{m g x^{2}} \\
x=\sqrt[3]{\frac{2 k q^{2} L}{m g}}
\end{gathered}
$$

