Energy of Assembly

Charges $-2 q$ at corners of equilateral triangle, $+q$ at centers of sides. Side length $2 d$. What's U of assembly?

$$
\begin{aligned}
& 6 \text { charges } \rightarrow 5+4+3+2+1=(6 * 5) / 2=15 \text { pairs } \\
& 3 \text { - to - pairs: } U=k(-2 q)(-2 q) /(2 d)=2 k q^{2} / d \\
& 3+\text { to }+ \text { pairs: } U=k(q)(q) /(d)=k q^{2} / d \\
& 6 \text { - to + pairs: } U=k(-2 q)(q) /(d)=-2 k q^{2} / d \\
& 3 \text { - to + pairs: } \\
& U=k(-2 q)(q) /(\sqrt{ } 3 d)=-(2 / \sqrt{ } 3) k q^{2} / d \\
& U=(6+3-12-6 / \sqrt{ } 3) k q^{2} / d=-(3+2 \sqrt{ } 3) k q^{2} / d
\end{aligned}
$$

Review: Potential

Charges $-2 q$ at 2 corners of equilateral triangle, $+q$ at centers of sides. Side length $2 d$. What's V at $3^{\text {rd }}$ apex?

For V calculation, ignore pre-existing pairs. 5 terms needed.

$$
2 \text { - charges: } V=k(-2 q) /(2 d)=-k q / d
$$

$$
2+\text { close: } V=k(q) /(d)=k q / d
$$

$$
1+\text { far: } V=k(q) /(\sqrt{ } 3 d)=(1 / \sqrt{ } 3) k q / d
$$

$V=(1 / \sqrt{ } 3) k q / d \quad$ (others cancel)

