\qquad

Physics 125: Analytical Physics II No Risk Quiz - Gauss' Law

The picture shows the cross-section of a thick-walled cylindrical pipe, with outer radius $b=12.0 \mathrm{~cm}$ and inner radius $a=6.0 \mathrm{~cm}$. The insulating material of the pipe carries a uniform charge density of $\rho=32.0 \mu \mathrm{C} / \mathrm{m}^{3}$.
Use Gauss' Law to determine the electric field strength at a distance r from the central axis, where $a<r<b$.
(1) [3 pts] Draw the appropriate Gaussian surface for this problem on the figure.
The dashed line, a cylinder of radius r and length h.

(2) [7 pts] Show how to get a formula for the electric field strength. Your answer should be a function of r, a, b, ρ, and physical constants. (DO NOT put the numerical values in your answer. They are just to help you think about the problem.)

$$
\oint \vec{E} \cdot d \vec{A}=\frac{1}{\varepsilon_{0}} q_{\mathrm{enc}}
$$

On the left, the standard flux for cylindrical symmetry, with the area of a cylinder's curved surface.

For enclosed charge, the charge fills the volume of the Gaussian surface except for the interior cavity with radius a.

$$
\begin{aligned}
E(2 \pi r h) & =\frac{1}{\varepsilon_{0}} \rho\left(\pi r^{2} h-\pi a^{2} h\right) \\
E 2 r & =\frac{\rho}{\varepsilon_{0}}\left(r^{2}-a^{2}\right)
\end{aligned}
$$

Then solve for $E \ldots$

$$
E=\frac{\rho}{2 \varepsilon_{0}} \frac{\left(r^{2}-a^{2}\right)}{r}
$$

From the Formula Sheet:
$k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
$\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$
cylinder: $2 \pi R L$
$\Phi_{E}=\int \vec{E} \cdot d \vec{A}$
$\varepsilon_{0} \Phi_{E}=q_{\mathrm{enc}}$

