Name \qquad

Physics 125: Analytical Physics II "No Risk" Quiz

In the circuit shown, the capacitors have values
$C_{1}=3 \mu \mathrm{~F}$
$C_{2}=6 \mu \mathrm{~F}$
$C_{3}=2 \mu \mathrm{~F}$
$C_{4}=4 \mu \mathrm{~F}$
The power supply is set to $V_{B}=24 \mathrm{~V}$.

(a) Circle any groups of individual capacitors that can be considered either "in parallel" or "in series," and label them. (You may then circle how that/those equivalent capacitors combine with others, but that will not be graded.) Only $3 \& 4$ in parallel. $1 \& 2$ can't be combined with any other single capacitor.
(b) Once all resulting currents stop flowing, what is the charge on capacitor C_{4} ?

First, work our way out:

- $C_{34}=C_{3}+C_{4}=6 \mu \mathrm{~F}$ (parallel)
- $1 / C_{134}=1 / C_{1}+1 / C_{34}=\frac{1}{3 \mu \mathrm{~F}}+\frac{1}{6 \mu \mathrm{~F}}=\frac{1}{2 \mu \mathrm{~F}} \rightarrow C_{134}=2 \mu \mathrm{~F}$ (series)
- $C_{1234}=C_{2}+C_{134}=8 \mu \mathrm{~F} \quad$ (parallel)

Then, work our way back in:

- $\Delta V_{B}=\Delta V_{2}=\Delta V_{134}$ (parallel) so that we really didn't need to worry about the $2+134$ combination after all
- 1 and 34 in series: $Q_{1}=Q_{34}=Q_{134}=C_{134} \Delta V_{134}=2 \mu \mathrm{~F} \cdot 24 \mathrm{~V}=48 \mu \mathrm{C}$
- 3 and 4 in parallel: $\Delta V_{3}=\Delta V_{4}=\Delta V_{34}=Q_{34} / C_{34}=48 \mu \mathrm{C} / 6 \mu \mathrm{~F}=8 \mathrm{~V}$
- $Q_{4}=C_{4} \Delta V_{4}=4 \mu \mathrm{~F} \cdot 8 \mathrm{~V}=32 \mu \mathrm{C}$

There is a shortcut: Parallel capacitors split charge proportionally to their capacitance. C_{4} has twice the capacitance of C_{3}, so:
$Q_{4}=\frac{2}{3} Q_{34}$ and $Q_{3}=\frac{1}{3} Q_{34}$
However, like most shortcuts, this should only be used if you have a very solid understanding of the basic method.

From the Formula Sheet:

$$
\begin{array}{rlrl}
k & =8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} & q=C V & C_{\mathrm{eq}}=C_{1}+C_{2}+C_{3}+\cdots \\
\varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} & C=\kappa \frac{\varepsilon_{0} A}{d} & \frac{1}{C_{\mathrm{eq}}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}+\cdots
\end{array}
$$

