	General	Point Charge(s) Only	Dipole Only
	$k = \frac{1}{4\pi\varepsilon_0}$	$\left \vec{F}\right = k \frac{\left \mathcal{Q}_1\right \left \mathcal{Q}_2\right }{r^2}$	$\left \vec{p} \right = qd$ neg. to pos.
Charge makes field		$\left \vec{E} \right = k \frac{ Q_i }{r^2}$ out of pos., into neg.	If far from dipole, $\vec{E} = 2k \frac{\vec{p}}{z^3}$ $\vec{E} = -k \frac{\vec{p}}{x^3}$ $\vec{\tau} = \vec{p} \times \vec{E}_{ext}$
External field pushes on charge		$\vec{F} = q\vec{E}_{\rm ext}$	$\vec{\tau} = \vec{p} \times \vec{E}_{ext}$ $\vec{F} = 0$ if \vec{E}_{ext} is uniform
Energy in external field			$U = -\vec{p} \cdot \vec{E}_{\rm ext}$

Equation Roundup