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Object Integral: Charge 
Consider an object with charge non-uniformly spread over it.  How might you find the total 
charge on it? 
Imagine plastic rod with charge distributed, and unevenly at that.  Suppose that you have a 20cm 
long rod, with a charge density of  λ1 = 2µC/m  and one end,  λ2 = 5µC/m  at the other end, and 
smoothly varying in between. 
Pieces 

With line-like objects, there is only one sensible way to do this.  Imagine all the pieces to be the 
same size.  We’ll imagine the pieces to be so short, that the charge density is constant on each 
one. 
Axes 

To describe this in algebraic form, we need a coordinate system that we can use to refer to 
different parts of the object.  I choose the origin to be at the less charged end, and the x-axis to 
lie along the rod.  Each bit is dx long. 
Contribution 

Each little bit holds a charge   dq = λ dx = λ(x) dx .  Notice one differential per side. 

Express 

Need to express λ (which is not a constant) in terms of the coordinates.  

  
λ = 2µC/m( ) + 15µC/m2( )x   Test this by plugging in limiting values for x.  Note how the units 

work.  So now 
  
dq = 2µC/m( ) + 15µC/m2( )x!

"
#
$dx  

Integrate 

 

  

dq
rod
∫ = 2µC/m( ) + 15µC/m2( )x dx

0m

0.2m

∫

q = 2µC/m( )x + 1
2

15µC/m2( )x2( "
#0m

0.2m

q = 0.7µC

 

Note that the integration step adds the integral sign, but does NOT involve adding the dx.  It 
should already be there from a previous step. 
Another Note: the integral limits must be increasing.  The dx implies that direction. 
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Object Integral: E Field Off End of Rod 
Take a rod with uniform charge density λ and length L, and suppose we want to know the 
electric field a distance a from the left end. 
Follow the same procedure.  Chop into pieces.  Axes hint: choose to make one axis pass through 
the point P.  Most often, this is a good plan. 

Contribution for one piece:  dE = k
dq
x2

.  Notice that x is not L or a.  x is variable, range a to 

a+L.  Notice also that we are working with the field magnitude: the component is of course in 
the negative direction. 

Even though the charge is evenly spread, so λ is the same everywhere, still the different dq will 
contribute differently to E because they are different distances away.  So that’s why you need to 
find the contribution of each piece. 
Even though Electric field is a vector, in this case all the vectors point in the same direction.  So 
the equation above is already for the horizontal component of the field.  With the standard 
equation  dq = λ dx , it is also already expressed in terms of constants and coordinates 

Then you integrate: E = k
λ dx
x2a

a+L

∫ = kλ −
1
x

$
%&

'

()a

a+L

= kλ
1
a
−

1
a + L

$
%&

*
+,
=

kλL
a(a + L)
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Object Integral: E Field at Perpendicular off a Rod End 
Set up with rod length L and point P at distance a.  Suppose that the charge density λ is negative. 
Overall direction: 

Thinking of lots of little vectors, we can tell that the 
total field will be up and to the right.  We handle this 
by treating each component separately.  Let us tackle 
the component parallel to the rod. 

Pieces 
Same as for all rod problems. 

Axes 
Definitely want an axis along the object.  Small part is dx.  Easiest if other axis is through point. 

Contribution 
A small generic piece still has charge  dq = λ dx , and is small enough to act like a point charge. 

• 1st, get the (small) field magnitude: dE = k
dq
r2

 

Components 

• Then take the component: 
   
dEx = k

dq

r 2

x
r

 

Express 

First, get the differential in terms of a coordinate: 
   
dEx = k

λ dx

r3 x   What else changes as you 

vary x (i.e., choose different pieces)?    r = x2 + a2   So 

   

dEx = k λ
x dx

a2 + x2( )3/ 2 . 

Integrate 
Recall: Only add integral sign, dx already there.  Ew!  Nasty integral.  Rely on Appendix or 
something. 

   

Ex = k λ
x dx

a2 + x2( )3/ 2
0

L

∫ = k λ −
1

a2 + x2( )1/ 2

$

%

&
&

'

(

)
)
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L

 

  
= k λ −1

a2 + L2
−

−1

a2

#

$
%

&

'
( = k λ 1

a
−

1

a2 + L2

#
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x 
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Object Integrals: E Field at Center of Arc 
Consider the E-field at the center of curvature of a 120° arc, radius R and with total charge Q.  
HRW show how to get the field at the “center” of the arc. 
Pieces: 

Still cut up object along its length.  Still equal sized pieces. 
Axes 

In order to lay a coordinate axis along to the object, we have to introduce 
circular coordinates to this problem. 

Call the length of the small pieces arc length ds.  We can still use 
𝑑𝑞 = 𝜆  𝑑𝑠.  But then we’ll convert using 𝛥𝑠 = 𝑅  𝛥𝜙 → 𝑑𝑠 = 𝑅  𝑑𝜙 (where 
the angle MUST be in radians).  So we’ll ultimately be chopping the ring into dφ pieces. 

It is also important to choose where 𝜙 = 0.  The 𝜙 = 0 point gets involved in two ways: how 
you take vector components, and limits of the integral.  These two MUST agree! 
Contribution: 

  
dE = k dq

r 2    … and that’s pretty much it! 

Components: 

Symmetry: Field points towards or away from arc middle, so vertical component is zero. 

  
dEx = −k

dq
r 2

cosφ  

Express: 

The only thing to fix is dq, but that has λ instead of Q.  Need 
2 / 3

Q Q
L R

λ
π

= = . 

  
dEx = −k

1
r 2

cosφ λr dφ = −k
1
R2

cosφ
3Q

2πR
R dφ  

Integrate: 

Notice how we have already made a choice about the coordinates, specifically where 𝜙 = 0  lies. 

  
Ex = −k

1
R2

3Q
2π

cosφ dφ
−π /3

π /3

∫  

  

Ex = −k
1
R2

3Q
2π

sinφ( $%−π /3

π /3
= −k

1
R2

3Q
2π

3
2
− −

3
2

&

'
(

)

*
+
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(
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)

*
+
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= −k
1
R2

3 3Q
2π

 

φ 
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Object Integral: E Field at Opposite Side of Arc 
It turns out that you can also find the field a distance 2R from 
the arc center (on the other side of the completing circle). 
Pieces & Axes: 

Choose circular, origin still at the arc center.  NEVER put the 
origin anywhere else!  dq = λ ds = λR dφ  

Choose  φ = 0  in the middle again.  Symmetry, you know. 

Contribution & Component: 

Symmetry: Field points towards or away from arc center, so 
vertical component is zero. 

  
dE = k dq

r 2   
  
dEx = −k

dq
r 2

cosθ  

Express: 

Our standard dq has the issue that λ is not given.  
2 / 3

Q Q
L R

λ
π

= = , so
  
dq = λR dφ = 3Q

2π
dφ  

There is a funky circle rule that says that  θ =
1
2φ . 

There is a more funky circle rule that says r and 2R are sides of a right triangle, so 
  
cosθ =

r
2R

. 

Put it all together:
  
dEx = −k

1
(2Rcosθ)2

cosθ
3Q
2π

dφ
%

&'
(

)*
= −k

3Q
8πR2 cos(φ / 2)

dφ  

Integrate: 
Notice how we have already made a choice about the coordinates, specifically where  φ = 0  lies.  
We must abide by that now, in choosing integral limits. 

  
Ex = −k

3Q
8πR2

1
cos(φ / 2)

dφ
−π /3

π /3

∫  

Barring a fancy calculator, the best way to evaluate this integral is with a change of variables. 

  
Ex = −k

3Q
8πR2

1
cosθ

2dθ
−π /6

π /6

∫ = −k
3Q

8πR2
2 ln(secθ + tanθ)( %&−π /6

π /6
 

  
Ex = −k

3Q
8πR2 2 ln3( )  

φ 
θ 
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Object Integral: E Field on Ring Axis 
Ring of radius R and total charge Q, we want to know E field on the axis of the ring, and distance 
z above its plane. 
Pieces & Axes: 

Still cut up object along its length.  Still equal sized pieces.  Choose circular coords, origin at the 
arc center,  dq = λ ds = λR dφ  

Contribution & Components: 
Symmetry tells us that only the z-component is non-zero.  Use symmetry to identify cancelation 
whenever possible. 

One little piece causes a little field at our point: 
  
dE = k dq

r 2 , 
  
dEz = k dq

r 2

z
r

.  NOTE: r here is the 

distance from dq to the point of interest; r is NOT a radial distance from the center of the ring. 
Express: 

In terms of the coordinates and given constants.  In this case, r is actually constant, so we can 
just leave it.  We do need to express λ in terms of the given Q. 

  
dEz = kz dq

r3 = kz λR
r3 dφ   Q = λ 2πR   

  
dEz = kz

Q
2πR

R

r3 dφ = kzQ
2πr3 dφ  

Integrate: 
Hey!  Nothing in there varies!  So we get an easy integral <<review getting limits>> 

  
Ez =

kQz
r3  

You might need to calculate r from R and z if those were given in the problem statement.  
However, as far as the integration is concerned, that doesn’t matter. 
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Object Integral: E Field on Axis of a Disk of Charge 
Wedge Method (HRW show Ring Method) 

If charge is spread over an area, then we of course describe it with a σ.  In this class, we will 
always approach surface charge by chopping it into linear charged pieces for which we already 
have an answer. 

Charged disk of radius R, surface charge density σ. 
Pieces & Axes: 

To do this differently from HRW, slice up into very thin wedges.  Equal 
sized pieces as always.  Cylindrical coords are still appropriate.  However, 
we need a coordinate to measure radially from the z axis; traditionally, that 
would be r or ρ, but we want to reserve r for Coulomb’s law, and ρ for 
volume charge density.  I will call the radial coordinate rx, so that our coordinate system is z, rx, 
φ . 

Contribution & Components: 
The contribution is now the vertical field from a wedge.  NOTE that this is NOT a point charge 
formula!!  For doing a surface charge (with the method in this class), the dQ will always be a 
long thin object, and you’ll need a subsidiary integration problem.  Sometimes it will already 
have been done, but not this time.  (NOTE: I’m using dQ for the charge on the thin wedge, and 
dq for the charge on a small piece along a wedge.) 

E Field Perpendicular off Tip of Thin Wedge 
The wedge is like a rod, but with more charge per length as you go away from the center: 

λ = λmax
rx
R

.  So do that problem: Very similar to the rod problem from before.  We need 

a coordinate to measure  

dE = k dq

rx
2 + z2( )

2
, dEz = dE

z

rx
2 + z2

= k z dq

rx
2 + z2( )

3/2
= k z

rx
2 + z2( )

3/2

λmaxrx
R

drx  

E =
kλmaxz
R

rx
rx
2 + z2( )

3/2
drx

0

R

∫ =
kλmaxz
R

−1

rx
2 + z2

#

$

%
%

&

'

(
(
0

R

=
kλmaxz
R

1
z
−

1

R2 + z2
#

$
%%

)

*
++   

Back to the original problem.  We have a wedge that is super thin, only  dφ  wide.  Relate that to 
the very small dQ?  Take a small patch of the disk near the edge, only drx by  ds = R dφ  in size.  
It will have charge equal to λmaxdrx = dq =σ drx Rdφ , so λmax =σRdφ .  Thus, the small electric 
field produced by the very thin wedge is (based on the wedge formula) 
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dE = kzσRdφ
R

1
z
−

1

R2 + z2
"

#
$$

%

&
''= kzσ

1
z
−

1

R2 + z2
"

#
$$

%

&
''dφ .  No components necessary. 

Express: No re-expressing necessary, it is already all given constants and coordinates: 
Integrate: 

Easier than it looks: mostly a constant: E = kzσ 1
z
−

1

R2 + z2
"

#
$$

%

&
'' dφ
0

2π

∫ = 2πkzσ 1
z
−

1

R2 + z2
"

#
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&
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