Types of Gauss' Law Problems

There are a limited number of Gauss' Law problems, and certain types of equations that will always come up in each type.

Notation: Below, I'll always use r for the radius of the Gaussian surface, and use a for the radius of physical charged objects. It is rarely the case that you want r and a to be the same.

Problem Type	Charge densities likely to be involved
Conductor with Cavity	<i>Q</i> , σ
Always use a Gaussian surface that passes through "the meat" of the conductor	
(shape is unimportant), so that	
$0 = \mathcal{E}_0 \Phi = q_{\text{enc}} = Q_{\text{surrounded}} + Q_{\text{inner surface}}$	
<i>Likely</i> to want to use charge conservation on the conductor:	
$Q_{\rm conductor} = Q_{\rm outer \ surface} + Q_{\rm inner \ surface}$	
Spherical Symmetry	<i>Q</i> , σ, ρ
Always use Gaussian surface (sphere with radius r), so that	
$\varepsilon_0 E(4\pi r^2) = \varepsilon_0 \Phi = q_{enc}$	
<i>Likely</i> to want to use some combination of the following to get q_{enc}	
$q = \sigma \left(4\pi a^2\right) \qquad q = \rho \left(\frac{4}{3}\pi a^3\right)$	
Cylindrical Symmetry (infinitely long)	λ, σ, ρ
Always use Gaussian surface (cylinder with radius r and length h), so that	
$\varepsilon_0 E(2\pi rh) = \varepsilon_0 \Phi = q_{enc}$	
and you will <i>always</i> find that $q_{enc} \propto h$.	
<i>Likely</i> to want to use some combination of the following to get q_{enc}	
$q = \lambda h$ $q = \sigma(2\pi ah)$ $q = \rho(\pi a^2 h)$	
Planar Symmetry (infinite in two directions)	σ, ρ
Always use Gaussian surface	
(right prism with length L and ends with area A), so that	
$\varepsilon_0 \left(E_{\text{right end}} A - E_{\text{left end}} A \right) = \varepsilon_0 \Phi = q_{\text{enc}}$	
and you will <i>always</i> find that $q_{enc} \propto A$.	
Note that $E_{\text{right end}}$ and $E_{\text{left end}}$ might be positive (field pointing right) or	
negative (field pointing left).	
<i>Likely</i> to want to use some combination of the following to get q_{enc} $q = \sigma A$ $q = \rho a A$	
Conductor Surface	σ
<i>Always</i> use same Gaussian surface as planar symmetry, one end in conductor, so that	
$\varepsilon_0 (E_{\text{outside}} A) = \varepsilon_0 \Phi = q_{\text{enc}} = \sigma A$	