Potential on axis of square

The Problem:
Given a r surface with charge density σ and edge length
$2 L$, find the electric potential at a point a distance z perpendicularly away from the center of the square.
A Solution:

Chop \& Coordinates

Slice plate into many thin rods of length $2 L$.

Choose x and y axes in the plane of the square and centered on it, with the y axis parallel to the thin rods. That way, the thin rods have width $d x$. The z axis passes through the point of interest.

Contribution

An arbitrary rod contributes a potential of
$V=k \lambda \ln \left(\frac{\sqrt{L^{2}+d^{2}}+L}{\sqrt{L^{2}+d^{2}}-L}\right)$, where d is the distance perpendicularly from the midpoint of the rod
to the point of interest. In this case, d is slanted, connecting a point on the x axis with the point of interest on the z axis. We can modify that equation to show that the rod is very thin, and thus contains a very small charge:

$$
d V=k \frac{d q}{2 L} \ln \left(\frac{\sqrt{L^{2}+d^{2}}+L}{\sqrt{L^{2}+d^{2}}-L}\right)
$$

Express

The charge on one thin rod is $d q=\sigma($ area $)=\sigma 2 L d x$.
The distance d varies depending on which thin rod you consider, and so has to be expressed as $d=\sqrt{z^{2}+x^{2}}$. Plugging those in gives:
$d V=k \sigma \ln \left(\frac{\sqrt{L^{2}+z^{2}+x^{2}}+L}{\sqrt{L^{2}+z^{2}+x^{2}}-L}\right) d x$

Integrate

$V=\int_{\text {object }} d V=\int_{-L}^{L} k \sigma \ln \left(\frac{\sqrt{L^{2}+z^{2}+x^{2}}+L}{\sqrt{L^{2}+z^{2}+x^{2}}-L}\right) d x$
Yeah, right...
But the important thing for this class is that we can get to this integral.

