Inside a Network of Capacitors

Here is configuration of capacitors, with some capacitance values. Suppose we apply 12 V top to bottom. What is the charge on cap 2?

Work our way out with equivalent capacitors:

- Top pair are in parallel, $C_{13}=4 \mu \mathrm{~F}$. Bottom pair are in parallel, $C_{24}=6 \mu \mathrm{~F}$.
- Those two are in series, $C_{1324}=12 / 5 \mu \mathrm{~F}$

Now work our way back in:

- C_{13} and C_{24} are in series, so we need to use the fact that these equivalent capacitors have the same charge...
- $Q_{1234}=C_{1234} V_{1234}=\left(\frac{12}{5} \mu \mathrm{~F}\right)(12 \mathrm{~V})=28.8 \mu \mathrm{C}$
- $Q_{24}=Q_{1234}=28.8 \mu \mathrm{C}$ (also $=Q_{13}$ but we don't need that fact for this problem)
- C_{2} and C_{4} are in parallel, so we need to use the fact that these capacitors have the same potential difference across them...
- $V_{24}=\frac{Q_{24}}{C_{24}}=\frac{28.8 \mu \mathrm{C}}{6 \mu \mathrm{~F}}=4.8 \mathrm{~V}$
- $\quad V_{2}=V_{24}=4.8 \mathrm{~V}$ (also $=V_{4}$ but we don't need that fact for this problem)
- Finally, we need the charge on cap 2 instead of voltage, $Q_{2}=C_{2} \Delta V_{2}=(2 \mu \mathrm{~F})(4.8 \mathrm{~V})=9.6 \mu \mathrm{C}$

