
Example

Two parallel wires with current flowing in the same direction, $i_1 = 2A \& i_2 = 3A$. Find the field at vertex the of 30-30-120 isosceles triangle.

Because the magnetic field is perpendicular to radii away from the wires, the angle between \vec{B} and the horizontal is $90^{\circ} - 30^{\circ} = 60^{\circ}$ (true for both \vec{B} s).

x:
$$B_1 \cos 60^\circ + B_2 \cos 60^\circ = 1.25 \,\mu\text{T}$$
, y: $-B_1 \sin 60^\circ + B_2 \sin 60^\circ = 2.165 \,\mu\text{T}$

WARNING: HRW show a similar Sample Problem 29-2, but with a 45-45-90 triangle. It is *PURE COINCIDENCE* that their B₁ and B₂ come out to be perpendicular, and therefore can be combined with the Pythagorean Theorem. Not a general result!