Example

Two parallel wires with current flowing in the same direction, $i_{1}=2 \mathrm{~A} \& i_{2}=3 \mathrm{~A}$. Find the field at vertex the of $30-30-120$ isosceles triangle.

Because the magnetic field is perpendicular to radii away from the wires, the angle between \vec{B} and the horizontal is $90^{\circ}-30^{\circ}=60^{\circ}$ (true for both $\vec{B} \mathrm{~s}$).
$\mathrm{x}: B_{1} \cos 60^{\circ}+B_{2} \cos 60^{\circ}=1.25 \mu \mathrm{~T}$,
$\mathrm{y}:-B_{1} \sin 60^{\circ}+B_{2} \sin 60^{\circ}=2.165 \mu \mathrm{~T}$

WARNING: HRW show a similar Sample Problem 29-2, but with a 45-45-90 triangle. It is PURE COINCIDENCE that their B_{1} and B_{2} come out to be perpendicular, and therefore can be combined with the Pythagorean Theorem. Not a general result!

