Springs/Oscillations/Fluids

Springs

From Hooke's law, it can be seen that springs are written in the form of ordinary differential equations who's solutions are in forms:

$$
x(t)=A \cos (\omega t+\varphi) \quad \text { or } \quad x(t)=A e^{i \omega t}
$$

Where $A=$ Amplitude of Oscillations and $\varphi=$ Phase Angle
A and ϕ are the two constants required to satisfy the constants of integration

The Potential Energy $U=\frac{1}{2} k x^{2}$ can also be incredibly useful for avoiding fully solving the differential equations

GRE book recommends approaching spring problems as follows:

- Limiting cases, dimensional arguments, and symmetry
- Conservation of Energy
- Writing and Solving the differential equation

Dampened Oscillators

We can add some damping force to the system, generally air resistance and drag appear proportional to velocity $F=-k x$, where the EOM for the oscillator becomes

$$
m \ddot{x}+b \dot{x}+k x=0
$$

There are three types of solutions for these systems: Underdamped, Overdamped, and Critically damped, generally represented as $\beta^{2}<\omega_{o}^{2}, \beta^{2}>\omega_{o}^{2}$, and $\beta^{2}=\omega_{o}^{2}$, respectively

Underdamped solution: $x(t)=A e^{-\beta t} \cos \left(\omega_{1} t-\delta\right)$
This represents oscillations with exponential decay.

In overdamped situations, no actual oscillations occur, the oscillator exponentially returns to equilibrium In critically damped situations, the system quickly returns to equilibrium

Driven Oscillator and Circuit Analog

We can also add a driving force to the system:

$$
m \ddot{x}+b \dot{x}+k x=A \cos (\omega t)
$$

The amplitude of oscillation is maximized when driving frequency equals resonant frequency $\omega_{R}^{2}=\omega_{o}^{2}-2 \beta^{2}$

A circuit system is comparable to a mechanical system

Mechanical System	Circuit System
x displacement	q charge
\dot{x} velocity	I current
m mass	L inductance
b damping resistance	R resistance
1/k spring stiffness	C capacitance
F driving force amplitude	\checkmark driving voltage amplitude

Problem

$$
\begin{gathered}
\omega=\sqrt{\frac{k}{m}} \\
\frac{\sqrt{k / 2 M}}{\sqrt{3 k / m}}=\sqrt{\frac{m}{6 M}}
\end{gathered}
$$

Fluids

Bernoulli's principle:

$$
\frac{v^{2}}{2}+g z+\frac{p}{\rho}=\text { Constant }
$$

So for pipes of different diameters

$$
v_{1} a^{2}=v_{2} b^{2}
$$

$$
\frac{v_{1}^{2}}{2}+g z_{1}+\frac{p_{1}}{\rho}=\frac{v_{2}^{2}}{2}+g z_{2}+\frac{p_{2}}{\rho}
$$

$$
p_{2}=\frac{\rho v_{1}^{2}}{2}\left(1-\frac{a^{4}}{b^{4}}\right)+p_{1}
$$

Buoyant Force

$$
F=\rho V g
$$

Moment of Inertia

First simple example:
Rotation of a thin spherical shell, with radius r, about an axis through the center

First simple example:
Rotation of a sphere, with radius r, about an axis through the center

Second Example:
A uniform rod of length a and negligible thickness rotating about its center

Third simple example:
Rotation of a rod with length a about its endpoint

Parallel Axis Theorem

$$
I_{\text {new }}=I_{\text {com }}+m h^{2}
$$

Orbital Motion/Centripetal Motion/Drag Force

Centripetal Motion

$$
\begin{gathered}
\omega=\frac{2 \pi}{T} \\
v=\frac{2 \pi r}{T}=\omega r \\
a=\frac{v^{2}}{r}=r \omega^{2}
\end{gathered}
$$


```
\omega}\mathrm{ , angular velocity
T, period of rotation
r, radius
\alpha, angular acceleration
```

$$
\alpha=\frac{d \omega}{d t}=0 \text { when } \mathrm{v} \perp \mathrm{a}
$$

Drag Force

$$
\begin{gathered}
F_{d}=k m v \\
F_{d}=k m v^{2} \\
v_{t}=\frac{g}{k} O R v t=\sqrt{g / k}
\end{gathered}
$$

$$
F_{d}=\frac{1}{2} c_{d} A \rho v^{2}
$$

c_{d}, drag coefficient
ρ, density of medium
A, cross-sectional area of object v , speed

Orbital Motion

$$
\begin{aligned}
F & =G \frac{m_{1} m_{2}}{r^{2}} \\
U(r) & =-G \frac{m_{1} m_{2}}{r} \\
\mu & =\frac{m_{1} m_{2}}{m_{1}+m_{2}}
\end{aligned}
$$

$$
G=6.67408^{*} 10^{-11} \mathrm{~m}^{\wedge} 3 \mathrm{~kg}^{\wedge}-1 \mathrm{~s}^{\wedge}-2
$$

$$
v_{\text {escape }}=\sqrt{(2 G M) / R}
$$

Kepler's $1^{\text {st }}$ Law

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

$$
r_{\min }=a(1-\varepsilon)
$$

$$
r_{\max }=a(1+\varepsilon)
$$

Kepler's $\mathbf{2}^{\text {nd }}$ Law

Kepler's $3^{\text {rd }}$ Law

$$
T^{2}=\left(\frac{4 \pi^{2}}{G m}\right) a^{3}
$$

Lagrangian and Hamiltonian Mechanics

Lagrangian Equations of Motion: How to

1. Draw a picture
2. Determine the number of degrees of freedom and define variable names for the degrees of freedom (Generalized Coordinates)
3. Write x, y, and z for each particle in terms of the generalized coordinates
4. Evaluate \dot{x}, \dot{y}, and \dot{z} in terms of generalized coordinates and velocities
5. Write Lagrangian: $L=\mathrm{T}-\mathrm{U}$
6. Solve LEM

$$
\frac{\partial L}{\partial q_{i}}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}
$$

Example Problem

A ball of mass m hangs from a rod of length l and swings back and forth in the xy-plane. Find the Lagrangian Equations of Motion.

1. Draw a picture

2. Determine the number of degrees of freedom and define variable names for the degrees of freedom (Generalized Coordinates)

3. Write x, y, and z for each particle in terms of the generalized coordinates

1 Degree of Freedom: θ

$$
\begin{gathered}
x=l \sin \theta \\
y=-l \cos \theta
\end{gathered}
$$

4. Evaluate \dot{x}, \dot{y}, and \dot{z} in terms of generalized coordinates and velocities

Recall:

$$
\begin{gathered}
x=l \sin \theta \\
y=-l \cos \theta
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
\dot{x} & =l \cos \theta \dot{\theta} \\
\dot{y} & =l \sin \theta \dot{\theta}
\end{aligned}
$$

5. Write Lagrangian: $L=\mathrm{T}-\mathrm{U}$

Kinetic Energy (T)

$$
\begin{gathered}
T=\frac{1}{2} m\left(\dot{x}^{2}+\dot{y}^{2}\right) \\
T=\frac{1}{2} m\left((l \cos \theta \dot{\theta})^{2}+(l \sin \theta \dot{\theta})^{2}\right) \\
T=\frac{1}{2} m l^{2} \dot{\theta}^{2}
\end{gathered}
$$

Potential Energy (U)

$$
\begin{gathered}
U=m g y \\
U=-m g l \cos \theta
\end{gathered}
$$

Lagrangian (L)

$$
L=\frac{1}{2} m l^{2} \dot{\theta}^{2}+m g l \cos \theta
$$

6. Solve LEM: $\frac{\partial L}{\partial q_{i}}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}$

Recall: $L=\frac{1}{2} m l^{2} \dot{\theta}^{2}+m g l \cos \theta$
Therefore:

$$
\begin{gathered}
\frac{\partial L}{\partial \theta}=-m g l \sin \theta \\
\frac{\partial L}{\partial \dot{\theta}}=m l^{2} \dot{\theta} \\
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=m l^{2} \ddot{\theta}
\end{gathered}
$$

Solution

We note

$$
\ddot{\theta}=-\frac{g}{l} \sin \theta
$$

Hamiltonian Equations of Motion: How To

1. Find Lagrangian
2. Find Hamiltonian
3. Find Generalized Momenta: $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$
4. Hamiltonian: $H=\sum p_{i} \dot{q}_{i}-L$
5. Make H "dotless"
6. Solve HEM

$$
\dot{q}_{i}=\frac{\partial H}{\partial p_{i}} \text { and } \dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}
$$

1. Find Lagrangian

$$
L=\frac{1}{2} m l^{2} \dot{\theta}^{2}+m g l \cos \theta
$$

2.1 Find Generalized Momenta: $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$

$$
L=\frac{1}{2} m l^{2} \dot{\theta}^{2}+m g l \cos \theta
$$

Note: $p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}$

Therefore,

$$
p_{\theta}=m l^{2} \dot{\theta}
$$

2.2 Hamiltonian: $H=\sum p_{i} \dot{q}_{i}-L$

Recall:

$$
L=\frac{1}{2} m l^{2} \dot{\theta}^{2}+m g l \cos \theta \text { and } p_{\theta}=m l^{2} \dot{\theta}
$$

Therefore,

$$
\begin{gathered}
H=m l^{2} \dot{\theta} \dot{\theta}-\frac{1}{2} m l^{2} \dot{\theta}^{2}-m g l \cos \theta \\
H=\frac{1}{2} m l^{2} \dot{\theta}^{2}-m g l \cos \theta
\end{gathered}
$$

2.3 Make H "dotless"

Recall:

$$
H=\frac{1}{2} m l^{2} \dot{\theta}^{2}-m g l \cos \theta
$$

Making H "dotless": $p_{\theta}=m l^{2} \dot{\theta}->\dot{\theta}=\frac{p_{\theta}}{m l^{2}}$

$$
\begin{gathered}
H=\frac{1}{2} m l^{2}\left(\frac{p_{\theta}}{m l^{2}}\right)^{2}-m g l \cos \theta \\
H=\frac{1}{2} \frac{p_{\theta}{ }^{2}}{m l^{2}}-m g l \cos \theta
\end{gathered}
$$

3. Solve HEM

Hamiltonian: $H=\frac{1}{2} \frac{p_{\theta}{ }^{2}}{m l^{2}}-m g l \cos \theta$

Solution: $\dot{q}_{i}=\frac{\partial H}{\partial p_{i}}$ and $\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}}$

Therefore,

$$
\dot{\theta}=\frac{p_{\theta}}{m l^{2}} \text { and } \dot{p}_{\theta}=-m g l \sin \theta
$$

Note

Note: $p_{\theta}=l m v=l^{2} m \dot{\theta}->\dot{p}_{\theta}=l^{2} m \ddot{\theta}$

$$
\begin{aligned}
l^{2} m \ddot{\theta} & =-m g l \sin \theta \\
\ddot{\theta} & =-\frac{g}{l} \sin \theta
\end{aligned}
$$

(Same as Lagrangian)

Other Notes

Iff the Lagrangian is independent of a coordinate q, the corresponding conjugate momentum $\frac{\partial L}{\partial \dot{q}}$ is conserved. (Time derivative is zero)

Iff the Hamiltonian is independent of a coordinate q, the corresponding conjugate momentum p is conserved.

