Springs/Oscillations/Fluids

Springs

From Hooke's law, it can be seen that springs are written in the form of ordinary differential equations who's solutions are in forms:

 $x(t) = A\cos(\omega t + \varphi)$ or $x(t) = Ae^{i\omega t}$

Where $A = Amplitude \ of \ Oscillations$ and $\varphi = Phase \ Angle$

A and φ are the two constants required to satisfy the constants of integration

The Potential Energy $U = \frac{1}{2}kx^2$ can also be incredibly useful for avoiding fully solving the differential equations

GRE book recommends approaching spring problems as follows:

- Limiting cases, dimensional arguments, and symmetry
- Conservation of Energy
- Writing and Solving the differential equation

Dampened Oscillators

We can add some damping force to the system, generally air resistance and drag appear proportional to velocity F = -kx, where the EOM for the oscillator becomes $m\ddot{x} + b\dot{x} + kx = 0$

There are three types of solutions for these systems: Underdamped, Overdamped, and Critically damped, generally represented as $\beta^2 < \omega_o^2$, $\beta^2 > \omega_o^2$, and $\beta^2 = \omega_o^2$, respectively

Underdamped solution: $x(t) = Ae^{-\beta t} \cos(\omega_1 t - \delta)$

This represents oscillations with exponential decay.

In overdamped situations, no actual oscillations occur, the oscillator exponentially returns to equilibrium

In critically damped situations, the system quickly returns to equilibrium

Driven Oscillator and Circuit Analog

We can also add a driving force to the system:

 $m\ddot{x} + b\dot{x} + kx = A\cos(\omega t)$

The amplitude of oscillation is maximized when driving frequency equals resonant frequency $\omega_R^2 = \omega_o^2 - 2\beta^2$

A circuit system is comparable to a mechanical system

	Mechanical System		Circuit System
х	displacement	q	charge
<i>x</i>	velocity	T	current
m	mass	L	inductance
b	damping resistance	R	resistance
1/k	spring stiffness	С	capacitance
F	driving force amplitude	V	driving voltage amplitude

Problem

$$k_{eq} = k + k + k = 3k$$

$$k_{eq} = \left(\frac{1}{k} + \frac{1}{k}\right)^{-1} = \frac{k}{2}$$

$$\omega = \sqrt{\frac{k}{m}}$$
$$\frac{\sqrt{k/2M}}{\sqrt{3k/m}} = \sqrt{\frac{m}{6M}}$$

Fluids

Bernoulli's principle:

$$\frac{v^2}{2} + gz + \frac{p}{\rho} = Constant$$

So for pipes of different diameters $v_1 a^2 = v_2 b^2$

$$\frac{v_1^2}{2} + gz_1 + \frac{p_1}{\rho} = \frac{v_2^2}{2} + gz_2 + \frac{p_2}{\rho}$$
$$p_2 = \frac{\rho v_1^2}{2} \left(1 - \frac{a^4}{b^4}\right) + p_1$$

Buoyant Force

 $F = \rho V g$

Moment of Inertia

First simple example: Rotation of a thin spherical shell, with radius *r*, about an axis through the center

First simple example: Rotation of a sphere, with radius *r*, about an axis through the center

Second Example: A uniform rod of length *a* and negligible thickness rotating about its center

Third simple example: Rotation of a rod with length *a* about its endpoint

Parallel Axis Theorem

Orbital Motion/Centripetal Motion/Drag Force

Centripetal Motion

Drag Force

Г

$$F_{d} = k m v$$
$$F_{d} = k m v^{2}$$
$$v_{t} = \frac{g}{k} OR vt = \sqrt{g/k}$$

$$F_d = \frac{1}{2} c_d A \rho v^2$$

c _d , drag coefficient		
ρ, density of medium		
A, cross-sectional area of object		
v, speed		

Orbital Motion

$$F=G\frac{m_1\,m_2}{r^2}$$

G=6.67408*10⁻¹¹ m^3 kg^-1 s^-2

$$U(r) = -G \frac{m_1 m_2}{r}$$
$$\mu = \frac{m_1 m_2}{m_1 + m_2}$$

$$v_{escape} = \sqrt{(2GM)/R}$$

Kepler's 1st Law

Kepler's 2nd Law

Kepler's 3rd Law

$$T^2 = \left(\frac{4\pi^2}{Gm}\right)a^3$$

Lagrangian and Hamiltonian Mechanics

Lagrangian Equations of Motion: How to

- 1. Draw a picture
- 2. Determine the number of degrees of freedom and define variable names for the degrees of freedom (Generalized Coordinates)
- 3. Write *x*, *y*, and *z* for each particle in terms of the generalized coordinates
- 4. Evaluate \dot{x} , \dot{y} , and \dot{z} in terms of generalized coordinates and velocities
- 5. Write Lagrangian: L = T U
- 6. Solve LEM

$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q_i}}$$

Example Problem

A ball of mass m hangs from a rod of length l and swings back and forth in the xy-plane. Find the Lagrangian Equations of Motion.

1. Draw a picture

2. Determine the number of degrees of freedom and define variable names for the degrees of freedom (Generalized Coordinates)

3. Write *x*, *y*, and *z* for each particle in terms of the generalized coordinates

4. Evaluate \dot{x} , \dot{y} , and \dot{z} in terms of generalized coordinates and velocities

Recall:

 $x = l \sin \theta$ $y = -l \cos \theta$

Therefore:

 $\dot{x} = l \cos \theta \,\dot{\theta}$ $\dot{y} = l \sin \theta \,\dot{\theta}$

5. Write Lagrangian: L = T - U

Kinetic Energy (T)

$$T = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2)$$
$$T = \frac{1}{2}m\left((l\cos\theta\,\dot{\theta})^2 + (l\sin\theta\,\dot{\theta})^2\right)$$
$$T = \frac{1}{2}ml^2\dot{\theta}^2$$

Potential Energy (U)

$$U = mgy$$
$$U = -mgl\cos\theta$$

Lagrangian (L)

$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$$

6. Solve LEM:
$$\frac{\partial L}{\partial q_i} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q_i}}$$

Recall: $L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$
Therefore:

$$\frac{\partial L}{\partial \theta} = -mgl\sin\theta$$
$$\frac{\partial L}{\partial \dot{\theta}} = ml^2\dot{\theta}$$
$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} = ml^2\ddot{\theta}$$

Solution

We note

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

Hamiltonian Equations of Motion: How To

- 1. Find Lagrangian
- 2. Find Hamiltonian
 - 1. Find Generalized Momenta: $p_i = \frac{\partial L}{\partial \dot{q}_i}$
 - 2. Hamiltonian: $H = \sum p_i \dot{q}_i L$
 - 3. Make H "dotless"
- 3. Solve HEM

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
 and $\dot{p}_i = -\frac{\partial H}{\partial q_i}$

1. Find Lagrangian

$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$$

2.1 Find Generalized Momenta: $p_i = \frac{\partial L}{\partial \dot{q}_i}$

$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta$$

Note:
$$p_i = \frac{\partial L}{\partial \dot{q}_i}$$

Therefore,

$$p_{\theta} = m l^2 \dot{\theta}$$

2.2 Hamiltonian:
$$H = \sum p_i \dot{q}_i - L$$

Recall:

$$L = \frac{1}{2}ml^2\dot{\theta}^2 + mgl\cos\theta \text{ and } p_\theta = ml^2\dot{\theta}$$

Therefore,

$$H = ml^2 \dot{\theta} \dot{\theta} - \frac{1}{2}ml^2 \dot{\theta}^2 - mgl\cos\theta$$

$$H = \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos\theta$$

2.3 Make H "dotless"

Recall:

$$H = \frac{1}{2}ml^2\dot{\theta}^2 - mgl\cos\theta$$

Making H "dotless": $p_{\theta} = ml^2\dot{\theta} \rightarrow \dot{\theta} = \frac{p_{\theta}}{ml^2}$

$$H = \frac{1}{2}ml^2(\frac{p_{\theta}}{ml^2})^2 - mgl\cos\theta$$

$$H = \frac{1}{2} \frac{{p_\theta}^2}{ml^2} - mgl\cos\theta$$

3. Solve HEM

Hamiltonian:
$$H = \frac{1}{2} \frac{p_{\theta}^2}{ml^2} - mgl \cos \theta$$

Solution:
$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
 and $\dot{p}_i = -\frac{\partial H}{\partial q_i}$

Therefore,

$$\dot{\theta} = \frac{p_{\theta}}{ml^2}$$
 and $\dot{p}_{\theta} = -mgl\sin\theta$

Note

Note:
$$p_{\theta} = lmv = l^2 m \dot{\theta} \rightarrow \dot{p}_{\theta} = l^2 m \ddot{\theta}$$

$$l^2 m \ddot{\theta} = -mgl \sin \theta$$

$$\ddot{\theta} = -\frac{g}{l}\sin\theta$$

(Same as Lagrangian)

Other Notes

Iff the Lagrangian is independent of a coordinate q, the corresponding conjugate momentum $\frac{\partial L}{\partial \dot{q}}$ is conserved. (Time derivative is zero)

Iff the Hamiltonian is independent of a coordinate q, the corresponding conjugate momentum p is conserved.