Springs/Oscillations/Fluids



From Hooke’s law, it can be seen that springs are written in the form of ordinary differential equations who’s

solutions are in forms:

x(t) = Acos(wt + @) or x(t) = Aei®t

Where A = Amplitude of Oscillations and ¢ = Phase Angle

A and ¢ are the two constants required to satisfy the constants of integration

The Potential Energy U = %kx2 can also be incredibly useful for avoiding fully solving the differential equations

GRE book recommends approaching spring problems as follows:
* Limiting cases, dimensional arguments, and symmetry
* Conservation of Energy

* Writing and Solving the differential equation



Dampened Oscillators

We can add some damping force to the system, generally air resistance and drag appear proportional to
velocity F = —kx, where the EOM for the oscillator becomes
mX+bx+kx=0

There are three types of solutions for these systems: Underdamped, Overdamped, and Critically damped,
generally represented as 82 < w?, B? > w?, and % = w?, respectively

Underdamped solution: x(t) = Ae Pt cos(w,t — &)

This represents oscillations with exponential decay.

In overdamped situations, no actual oscillations occur, the oscillator exponentially returns to equilibrium

In critically damped situations, the system quickly returns to equilibrium



Driven Oscillator and Circuit Analog

We can also add a driving force to the system:

The amplitude of oscillation is maximized when driving frequency equals resonant frequency w3 = w

mi + bx + kx = A cos(wt)

A circuit system is comparable to a mechanical system
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Bernoulli’s principle:

Fluids

172

> + gz + % = Constant

So for pipes of different diameters
via? = v,b?
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Buoyant Force

F=plg



Moment of Inertia



First simple example:
Rotation of a thin spherical shell, with radius r, about an axis through the center
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First simple example:
Rotation of a sphere, with radius r, about an axis through the center
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Second Example:
A uniform rod of length a and negligible thickness rotating about its center
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Third simple example:
Rotation of a rod with length a about its endpoint




I = Em[rlz + 152]







Parallel Axis Theorem

Inew = Icom + mh?




Orbital Motion/Centripetal Motion/Drag
Force



Centripetal Motion

vz ,
a=—=1rw
r

w, angular velocity

T, period of rotation o= dw _ 0 whenv - a
r, radius dat

o, angular acceleration




Drag Force

A
Fq
F,=kmv
F,; = k m v? Q
g
v,=— O0ORvt=,/g/k

k L

1 cg4, drag coefficient

F;,=—c, Apv? p, density of medium
2 A, cross-sectional area of object
v, speed




Orbital Motion

m,m
F = 12 2
r
m;m,
Ulr) =-G
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m;m,
U=

m, +m,

G=6.67408*10"1"mA3 kg”*-1 s*-2

vescape = \/(ZGM)/R




Kepler’s 15t Law

Tmin = a(l _ E) Tmax = a(l + 8)



Kepler’s 2" Law




Kepler’s 39 Law




Lagrangian and Hamiltonian Mechanics



Lagrangian Equations of Motion: How to

Draw a picture

Determine the number of degrees of freedom and define variable names
for the degrees of freedom (Generalized Coordinates)

3. Write x, y, and z for each particle in terms of the generalized
coordinates

. Evaluate x, y, and z in terms of generalized coordinates and velocities
5. Write Lagrangian: L =T —U

Solve LEM
dL d JdL

dq; _ dt dd;




Example Problem

A ball of mass m hangs from a rod of length [ and swings back and
forth in the xy-plane. Find the Lagrangian Equations of Motion.



1. Draw a picture



2. Determine the number of degrees of freedom
and define variable names for the degrees of
freedom (Generalized Coordinates)

=<

A
|
|
|
|
1
|
1
1
1
1
|
|
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
k
1
1
1
1
|
1
1
1
1
1
|
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
|
|
|
|
|
1
1
1
1
1

e ——3

1 Degree of Freedom: 6

e
@
3

R v



3. Write x, v, and z for each particle in terms
of the generalized coordinates

ty
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1 Degree of Freedom: 6 i p [
x =1sinf i
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4. Evaluate x, y, and z in terms of generalized
coordinates and velocities

Recall:
x =1[lsin@
y = —lcos@

Therefore:
x=1cosB6
y =1sinf 6



5. Write Lagrangian: L =T — U

Kinetic Energy (T)
1
T = —m(x + y2)

m ( (I cos 9 6)%+(Lsin 6 6)?)

Nlr—\

T = 1262
Zm

Potential Energy (U)

U=mgy
U= —-mglcos6
Lagrangian (L)

1 :
L= Emlzez + mgl cos 8



oL d OL

6. Solve LEM: 30, = — 5a.

Recall: L = %mlzéz + mgl cos 8

Therefore:
dL

ET I —mgl sin 0



Solution

We note

0 = —"sin®




Hamiltonian Equations of Motion

1. Find Lagrangian
2. Find Hamiltonian
oL

1. Find Generalized Momenta: p; = a0,

2. Hamiltonian: H = ), p;q; — L
3. Make H “dotless”

3. Solve HEM

: How To



1. Find Lagrangian

1 :
L= Emlzez + mgl cos 8



2.1 Find Generalized Momenta: p; = aa—;_
l

1 :
L= Emlzez + mgl cos 8

oL
Note: p; = 34,

Therefore, .
Pg = ml2 )



2.2 Hamiltonian: H = ), p;q; — L

Recall:
L = %mlzéz + mgl cos 6 and pg = ml?6

Therefore,
.1 .
H =ml?00 — EmIZHZ — mgl cos 8

H = imlzéz —mgl cos @



2.3 Make H “dotless”

Recall:

H = lezéz —mglcos@

. o" V4 : ] p_
Making H “dotless”: pg = ml?0 -> 8 = m?z
1
H = Emlz(:%)z—mgl cos 6
1 2
H ——pi—mglcose

— 2ml?



3. Solve HEM

1 pg?

Hamiltonian: H = -=—=— — mgl cos 0
2 ml?

: . 0H . J0H
Solution: g; = a—piand D; = ~ a0
Therefore,

6 =2 and pg

ml?

mglsin 6



Note

Note: pg = Imv = 1?m6 ->py = 1°mb

’m6 = —mglsin 6

0 = —%sin@

(Same as Lagrangian)



Other Notes

Iff the Lagrangian is independent of a coordinate q, the corresponding

. oL . . .
conjugate momentum 34 1 conserved. (Time derivative is zero)

Iff the Hamiltonian is independent of a coordinate q, the corresponding
conjugate momentum p is conserved.



