Psychology: Explaining Behavior

Practice exercise

- Researchers have found that people with low self-confidence are more susceptible to flattery than those of high self-confidence.

- Researchers have found that people with high self-confidence are more susceptible to flattery than those of low self-confidence.

We do NEED to do the research!

Ways of Knowing -- Intuition

- Intuition
 - Draw on personal observations & knowledge
 - Create “logical” causal explanation
 - Problem: May or may not be true

Intuition: Potential Problems

- Illusory correlations (observations)
 - Overestimation of the co-occurrence of two events
 - Ex: Couples adopt -- then become pregnant
 - Salient event -- more memorable
 - Negative case: adopt - no pregnancy
 - More common
 - Less memorable
 - People overestimate adopt-pregnant

Intuition: Potential Problems

- Confirmation bias (observations)
 - Better memory/processing of events consistent with our beliefs
 - (Contributing factor to stereotypes)
 - Result: Reasoning with faulty information

 - Ex: Couples adopt -- become pregnant
 - Believe there is a relationship between the two
 - Process positive instances
 - Ignore negative instances
 - Strengthens “belief”
 - Hold onto our “beliefs/theories” about the world

Intuition: Potential Problems

- Inferential Bias
 - Bias to infer causality from correlation
 - If two things are correlated (tend to occur together)
 - Bias to construct causal explanation
 - One event caused the other
 - (WRONG -- correlation does not imply causation)
 - Ex: Couples adopt -- Become pregnant
 - Causal explanation?
 - Easy to construct a believable “story”
 - But is it true????
 - Ex: high/low self confidence & flattery?
Intuition is OK as a starting point for research ideas
- Don’t stop with just the idea
- NEED TO VERIFY EMPIRICALLY
Intuition led people to believe that:
- Skull size (and therefore brain volume) was related to intelligence
- Teaching subjects such as Latin exercised the brain, and would transfer to other domains
- Athletes shouldn’t drink water during practice
And even the contradictory notions that:
- Birds of a feather flock together / Opposites attract
- Absence makes the heart grow fonder / Out of sight, out of mind

7 Ways of Knowing: Authority
- Believe something to be true because a trusted source (authority) claimed that is was.
- Do you ever do this?
- Potential Problem – How did authority gain information?
 - Intuition?
 - Faulty research?
- Ex: Aristotle claimed that heavier objects fall faster than lighter objects (intuition and logic)
 - People believed for over 1000 years
 - Galileo showed that it was false (research)
- Authority -- sometimes best option available
 - But -- don’t blindly assume they are correct

8 Ways of Knowing: Science
- Scientific Method
 - Make observations to verify/test our ideas
 - Do so in a systematic, objective way – avoid biases, confounds, etc.
 - Advantages:
 • Self-correcting – if we are wrong, we will know it (eventually)
 • Ultimately will lead to the best answer
- Characteristics of Scientific Approach:
 - Skeptical Attitude
 - Empirical Approach

9 Skeptical Attitude
- Don’t accept assertions without data to back them up
- Question how the data was collected
 - Were sound research methods used?
- Look for alternative explanations for findings
 - Biases?
 - Confounds?
- Check/verify findings from other scientists before accepting
 - Uncovers bad research
 • Results due to something else
 • Uncovers fraudulent research
- Tentative acceptance of theories/ideas
 - May currently be best available explanation
 - Our understanding can change with new data

10

11 Empirical Approach
Knowledge is built from observations
Take care to avoid biases and subjectivity
- Scientist is aware of these biases -- takes steps to avoid
- Seek to be as objective as possible
 • Make observations that others are able to verify
 • Others can replicate our results
 • Objective vs. Subjective measures
 - Objective -- other observers can verify/confirm
 - Subjective -- info available only to “observers”

12 Assumptions of the Scientific Method
- Ordered System -- systematic relationship among events
 - Can be observed, described, understood
- Determinism -- all events have a cause
 - These causal relationships can be understood
- Parsimony -- the simpler, the better
 - Simple mechanisms and relationships are preferred over more complex ones
 - More generalizable

13 Wheel of Science
- Knowledge advances with the development and testing of theories
- With each cycle, understanding becomes closer to true state of the world

14 Variables
- Psychology -- relationship among variables
- Variable -- anything that can assume different values
- Ex:
 - Test anxiety and test performance
 - Birth order and autonomy
 - Word length and memory span
 - Exposure to media violence and aggressive behavior
 - Alcohol use and condom use
 - Hormone levels and toy preference

15 Goals of Scientific Method
- Understanding usually progresses in this order
- Description -- characterize and catalog variables of interest
 - Describing characteristics of phenomenon
- Prediction -- identify relationship among variables
 - Relationship -- able to predict one from the other
- Explanation -- establish causal relationship
 - Understand HOW one variable influences the other
- Control -- use knowledge to improve human condition
 - Understanding of causal relationship -- allows control of phenomenon

16 Necessary Conditions for Causal Inference
- Temporal Precedence
 - Cause has to precede the effect
- Covariation
 - When cause changes, effect should change
- Elimination of plausible alternative explanations
 - Rule out other possible causes
 - ** most difficult to establish
Types of Research

- Basic vs. Applied
 - Differ in terms of goals or objectives

 - Basic Research
 - Goal: advance theoretical understanding
 - Test hypotheses derived from theories
 - May or may not have immediate applied implications

 - Applied Research
 - Goal: solve specific problem
 - Arrive at best solution
 - May or may not have immediate theoretical implications

Basic vs. Applied Example

- Basic
 - How situational factors influence behavior
 - How/why colors influence behavior/mood
 - Develop model/theory of relationship/mechanism

- Applied
 - Do the color of prisoner uniforms affect aggressiveness?
 - Do prisoners in green/blue/pink uniforms exhibit less violent behavior?