Analytical Physics II Lab Worksheet 11: Small RC Time Constants

Name:	_ Date	:
Partner:	_	
Part 1) Value of your capacitor:	<i>C</i> =	nF
Value of your resistor:	<i>R</i> =	Ω
Amplitude of your function gener	ator: $V_0 = $	V
Time constant of circuit:	τ=	ms
Part 2) Frequency of your function genera	ator: $f = $	kHz
Period of your function generator:	<i>T</i> =	ms
Part 3) Scope setting:	vertical =	volts/div
Scope setting:	horizontal =	ms/div_
Amplitude cursors:	<i>V</i> _{pp} =	V
Time cursors: time when $V = V_{pp}/$	e τ=	ms
Part 4) New value of capacitor:	<i>C</i> =	nF
New time constant of circuit:	τ=	ms
New frequency of your function g	enerator: $f =$	kHz
Log plot in Excel:	τ=	ms
Part 5)New frequency of your function g	enerator: f =	kHz
New time constant of circuit:	τ=	ms
Apparent resistance:	<i>R</i> =	Ω
Part 6) Test capacitance:	<i>C</i> =	nF