Beam and Loading	Displacement (all beams have total length L)
	$y=-\frac{w}{24 E I}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}\right)$
	$y=\frac{M x^{2}}{2 E I}$
	$y=\frac{w}{24 E I}\left(4 a x^{3}-6 a^{2} x^{2}-x^{4}\right)+\frac{w}{24 E I}(x-a)^{4}\langle x-a\rangle^{0}$
	$y=\frac{P}{6 E I}\left(x^{3}-3 a x^{2}\right)-\frac{P}{6 E I}(x-a)^{3}\langle x-a\rangle^{0}$
	$y=\frac{M}{2 E I} x^{2}-\frac{M}{2 E I}(x-a)^{2}\langle x-a\rangle^{0}$
	$y=\frac{P(L-a)}{6 L E I}\left(x^{3}+a^{2} x-2 a L x\right)-\frac{P}{6 E I}(x-a)^{3}\langle x-a\rangle^{0}$
	$y=\frac{M}{6 L E I}\left(x^{3}+2 L^{2} x-6 a L x+3 a^{2} x\right)-\frac{3 M}{6 E I}(x-a)^{2}\langle x-a\rangle^{0}$
	$y=-\frac{w}{24 E I}\left(x^{4}-2 L x^{3}+L^{3} x\right)$
	$\begin{aligned} & y=-\frac{w x}{24 L E I}\left(a^{4}-4 L a^{3}+4 a^{2} L^{2}+2 a^{2} x^{2}-4 a L x^{2}+L x^{3}\right) \\ & +\frac{w}{24 E I}(x-a)^{4}\langle x-a\rangle^{0} \end{aligned}$

This beam has too many reactions (4 reactions in a 2-D Problem), and 3 of them are unknown (since $R_{\mathrm{A} x}=0$).

Given P, L, and n, determine the reactions.
We start by defining R_{B} as some unknown fraction " q " of $P: R_{\mathrm{B}}=q P$ (see FBD).
If we can solve for q, then we'll know everything.

N2L: $\quad R_{\mathrm{A}}+R_{\mathrm{B}}=P$, so $R_{\mathrm{A}}=P(1-q)$
Similarly, N2LR: $\quad M_{\mathrm{A}}=P L(n-q)$.
On the left: $\quad V_{1}(x)=R_{\mathrm{A}}=P(1-q)$
Integrating: $\quad M_{1}(x)=P(1-q) x-M_{\mathrm{A}}$, or

$$
M_{1}(x)=P(1-q) x-P L(n-q)
$$

On the right: $\quad V_{2}(x)=-R_{\mathrm{B}}=-q P$
Integrating: $\quad M_{2}(x)=-q P+R_{\mathrm{B}} L$, or

$$
M_{2}(x)=R_{\mathrm{B}}(L-x)=q P(L-x)
$$

On the left: $\quad E I y_{1}{ }^{\prime \prime}=M_{1}$

$$
E I y_{1}^{\prime}=\int M_{1} \mathrm{~d} x=1 / 2 P(1-q) x^{2}-P L(n-q) x+C_{2}
$$

BC:

$$
y_{1}^{\prime}(0)=0 \quad \rightarrow C_{2}=0 .
$$

$$
E I y_{1}=\int(\ldots) \mathrm{d} x=\left({ }^{1} / 6\right) P(1-q) x^{3}-1 / 2 P L(n-q) x^{2}+C_{4}
$$

BC:

$$
y_{1}(0)=0 \quad \rightarrow C_{4}=0
$$

$$
E I y_{1}=(1 / 6) P(1-q) x^{3}-1 / 2 P L(n-q) x^{2}
$$

On the right: $E I y_{2}{ }^{\prime \prime}=M_{2}$
$E I y_{2}{ }^{\prime}=\int M_{2} \mathrm{~d} x=q P\left(L x-1 / 2 x^{2}\right)+C_{3}$
$E I y_{2}=\int(\ldots) \mathrm{d} x=q P\left(1 / 2 L x^{2}-(1 / 6) x^{3}\right)+C_{3} x+C_{5}$
$\mathrm{BC}: \quad y_{1}{ }^{\prime}(a)=y_{2}{ }^{\prime}(a)$
$\mathrm{BC}: \quad y_{2}(L)=0$
\rightarrow tons of algebra $\quad \rightarrow C_{3}=-1 / 2 P L^{2} n^{2}$, and $C_{5}=P L^{3}\left(1 / 2 n^{2}-(1 / 3) q\right)$
$\mathrm{BC}: \quad y_{1}(a)=y_{2}(a) \quad \rightarrow$ more algebra

$$
q=1 / 2\left(3 n^{2}-n^{3}\right)
$$

Reactions:

$R_{\mathrm{B}}=q P$	$R_{\mathrm{A}}=(1-q) P$	$M_{\mathrm{A}}=P L(n-q)$

