Problem 4-1, page 167

Crates: $m_{C}=m_{D}=350 \mathrm{~kg}$.
Truck: $m_{G}=1400 \mathrm{~kg}$
Note that $W=m g ; g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
FBD is everything above the ground
$\Sigma M_{A}=0$

$+\left(W_{C} L_{A C x}\right)-\left(W_{D} L_{A D x}\right)-\left(W_{G} L_{A G x}\right)+\left(R_{B} L_{A B x}\right)=0$
\rightarrow all are known except R_{B}
\rightarrow plug ' n ' chug $\rightarrow=R_{B}=8469.3 \mathrm{~N}$
Since there are two front tires, each tire holds a weight of

$$
W_{\text {front }}=R_{B} / 2=4.235 \mathrm{kN}
$$

$\Sigma F_{y}=0$
$-W_{C}-W_{D}-W_{G}+R_{A}+R_{B}=0 \rightarrow$ only unknown is $R_{A} \rightarrow R_{A}=12131.7 \mathrm{~N}$;

$$
W_{\text {back }}=R_{A} / 2=6.066 \mathrm{kN}
$$

Problem 4-13, page 168

Given:

$$
\begin{aligned}
& R_{\text {Amax }}=180 \mathrm{~N} \\
& R_{\text {Bmax }}=180 \mathrm{~N}
\end{aligned}
$$

$\Sigma M_{B}=0$
$+(0.9 \mathrm{~m})(50 \mathrm{~N})-(0.9 \mathrm{~m}-d)\left(R_{\mathrm{A}}\right)$
$+(0.45 \mathrm{~m})(100 \mathrm{~N})+0+0=0$

$$
\rightarrow R_{\mathrm{A}}=(90 \mathrm{~N}) /(0.9 \mathrm{~m}-d) \quad[1]
$$

150N

$\Sigma F_{y}=0$
$-50 \mathrm{~N}-100 \mathrm{~N}-150 \mathrm{~N}+R_{\mathrm{A}}+R_{\mathrm{B}}=0$

$$
\rightarrow R_{\mathrm{By}}=300-(90 \mathrm{~N}) /(0.9 \mathrm{~m}-d)
$$

From [1], using $R_{\mathrm{Amax}}=180 \mathrm{~N}, d_{\text {min }}=0.4 \mathrm{~m}$ (for this $d, R_{\mathrm{By}}=120 \mathrm{~N}$).
From [2], using $R_{\text {Bmax }}=180 \mathrm{~N}, d_{\min }=0.15 \mathrm{~m}$. For this $d, R_{\mathrm{A}}=120 \mathrm{~N}$.
If $d>0.4 \mathrm{~m}$, then $R_{\mathrm{A}}>R_{\text {Amax }}$ (for example, if $d=0.5 \mathrm{~m}$, then $R_{\mathrm{A}}=225 \mathrm{~N}$.
If $d<0.15 \mathrm{~m}$, then $R_{\mathrm{By}}>R_{\mathrm{Bmax}}$ (for example, if $d=0.0 \mathrm{~m}$, then $R_{\mathrm{A}}=200 \mathrm{~N}$.
So, we require that $0.15 \mathrm{~m} \leq d \leq 0.4 \mathrm{~m}$

Problem 4-35, page 172

$L_{\mathrm{AB}}=L_{\mathrm{BC}}=L_{\mathrm{CD}}=100 \mathrm{~mm}$
$L_{\mathrm{BEx}}=200 \mathrm{~mm}$
$L_{\text {BEy }}=80 \mathrm{~mm}$
$L_{\mathrm{BE}}=215.41 \mathrm{~mm}$
$L_{\mathrm{CFx}}=100 \mathrm{~mm}$
$L_{\text {CFy }}=80 \mathrm{~mm}$
$L_{\mathrm{CF}}=128.06 \mathrm{~mm}$

My object is the horizontal beam:
I. $\Sigma M_{C}=0$

$$
\begin{aligned}
& \left(+F_{\mathrm{A}}\right)\left(L_{\mathrm{AC}}\right)-\left(+T_{\mathrm{BEy}}\right)\left(L_{\mathrm{BC}}\right)+0+0+0+0=0 \\
& \quad \text { Algebra } \rightarrow
\end{aligned}
$$

$$
T_{B E}=\left(\frac{L_{B E}}{L_{B E y}}\right) \frac{F_{A} L_{A C}}{L_{B C}}=T_{\mathrm{BE}}=2131 \mathrm{~N}
$$

$$
\mathrm{F}_{\mathrm{A}}=600 \mathrm{~N} \quad T_{C F}
$$

II. $\Sigma F_{y}=0$

$$
-F_{\mathrm{A}}+T_{\mathrm{BEy}}-T_{\mathrm{CFy}}=0
$$

$$
-F_{A}+T_{B E} \frac{L_{B E y}}{L_{B E}}-T_{C F} \frac{L_{C F y}}{L_{C F}}=0
$$

$$
\text { algebra } \rightarrow T_{\mathrm{CF}}=960.5 \mathrm{~N}
$$

III. $\Sigma F_{x}=0$

$$
-N_{\mathrm{D}}+T_{\mathrm{BEx}}+T_{\mathrm{CFx}}=0
$$

$$
+T_{B E} \frac{L_{B E x}}{L_{B E}}+T_{C F} \frac{L_{C F x}}{L_{C F}}=N_{D} \quad \text { algebra } \rightarrow N_{\mathrm{D}}=3750 \mathrm{~N}
$$

