A certain dam is $w=100 \mathrm{ft}$ wide (into the page). The cross section is shown.
Find the reactions exerted by the ground on the dam.

Water: $\gamma_{\mathrm{w}}=\rho_{\mathrm{w}} g=62.4 \mathrm{lb} / \mathrm{ft}^{3}$
Concrete: $\gamma_{\mathrm{c}}=\rho_{\mathrm{c}} g=150 \mathrm{lb} / \mathrm{ft}^{3}$
My FBD is indicated by the heavy gray
 dashed line. The forces acting on this body are:

1. The weight of the concrete.
2. The weight of the water enclosed in the FBD
3. Pressure from the water to the right of the FBD
4. Vertical and horizontal reactions from the ground.
5. Weight of the concrete:

$\mathrm{I}+\mathrm{II}+\mathrm{III}-\mathrm{IV}$

Element	Area $\left(\mathrm{ft}^{2}\right)$	$\bar{x}(\mathrm{ft})$	$\bar{x} A\left(\mathrm{ft}^{3}\right)$
I	346.36	12.087	4186.5
II	168.00	25.00	4200.0
III	441.00	39.50	17419.5
IV	-346.36	41.087	-14230.9
$\Sigma \Sigma$	+609.00		+11575.1

$\bar{x}_{\text {concrete }}=\left(11575.1 \mathrm{ft}^{3}\right) /\left(609.0 \mathrm{ft}^{2}\right)=19.007 \mathrm{ft}$
$W_{\text {concrete }}=w \gamma_{\mathrm{c}} A_{\mathrm{c}}=(100 \mathrm{ft})\left(150 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(609.0 \mathrm{ft}^{2}\right)=9,135,000 \mathrm{lb}$.
2. Weight of the water: The water occupies region "IV" above: $A_{\mathrm{w}}=346.36 \mathrm{ft}^{2} ; \bar{x}_{\mathrm{w}}=41.087 \mathrm{ft}$. $W_{\text {water }}=w \gamma_{\mathrm{w}} A_{\mathrm{w}}=(100 \mathrm{ft})\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)\left(346.36 \mathrm{ft}^{2}\right)=2,161,300 \mathrm{lb}$.
3. Pressure from the right: $F_{p}=\int P d A=\int_{y=0}^{y=R}\left(\gamma_{w} y\right)(w d y)=\frac{\gamma_{w} w R^{2}}{2}=F_{\mathrm{p}}=1,375,900 \mathrm{lb}$. This force acts at $y=(2 / 3)(R)=14 \mathrm{ft}$.
4. Total FBD:

$$
\begin{array}{ll}
\Sigma F_{x}=0 & \rightarrow R_{x}=1,375,900 \mathrm{lb} \\
\Sigma F_{y}=0 & \rightarrow R_{y}=11,296,300 \mathrm{lb} \\
\Sigma M_{A}=0 & \rightarrow d=22.379 \mathrm{ft}
\end{array}
$$

Problem: Determine L to ensure that segment BCD is horizontal when the wire hangs freely.

Let $\gamma=$ weight per unit length
Pythagorean theorem: $L_{\mathrm{AB}}=250 \mathrm{~mm}$
$W_{\mathrm{AB}}=\gamma L_{\mathrm{AB}}$
$W_{\mathrm{BC}}=\gamma L_{\mathrm{BC}}$

$W_{\mathrm{CD}}=\gamma L$

$$
\rightarrow L=300 \mathrm{~mm}
$$

Element	Area $\left(\mathrm{mm}^{2}\right)$	$\bar{y}(\mathrm{~mm})$	$\bar{y} A\left(\mathrm{~mm}^{3}\right)$
II	336	$6+21 / 3=13$	4368
II	-108	$6+9 / 3=9$	-972
$\Sigma \Sigma$	228		+3396
$\bar{Y}=\frac{\sum \bar{y} A}{\sum \sum A}=\frac{3396 \mathrm{~mm}^{3}}{228 \mathrm{~mm}^{2}}=\bar{Y}=14.895 \mathrm{~mm}$			

Find the volume and mass of the iron collar:
Given: $\rho_{\text {iron }}=7200 \mathrm{~kg} / \mathrm{m}^{3}$.
Step I: Find \bar{Y}. The shaded shape is composed of two triangles:

$V=2 \pi \bar{Y} A=(2 \pi)(14.895 \mathrm{~mm})\left(228 \mathrm{~mm}^{2}\right)=V=21338 \mathrm{~mm}^{3}$
$m=\rho V=\left(7200 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(21338 \mathrm{~mm}^{3}\right) \times(1 \mathrm{~m} / 1000 \mathrm{~mm})^{3} \times(1000 \mathrm{~g} / 1 \mathrm{~kg})=m=153.6 \mathrm{~g}$

