Find the shear force and bending moments in the beam having the loading shown.
First, find $w_{\mathrm{AB}}(x): w_{\mathrm{AB}}(x)=w_{\max }\left(1-x / L_{\mathrm{AB}}\right)$
Find the shear force for section AB :

$$
\begin{aligned}
& V_{A B}(x)=-\int w_{\max }\left(1-\frac{x}{L_{\mathrm{AB}}}\right) d x \\
& V_{A B}(x)=-w_{\max }\left(x-\frac{x^{2}}{2 L_{\mathrm{AB}}}\right)+C_{1} \quad \text { but } C_{1}=0, \text { so } \\
& V_{A B}(x)=-w_{\max }\left(x-\frac{x^{2}}{2 L_{\mathrm{AB}}}\right)
\end{aligned}
$$

Find the V_{B} to use as a boundary condition for the next region:

$$
V_{\mathrm{B}}=-w_{\max }\left(L_{\mathrm{AB}}-\frac{L_{\mathrm{AB}}^{2}}{2 L_{\mathrm{AB}}}\right)=\frac{-w_{\max } L_{\mathrm{AB}}}{2} \rightarrow V_{\mathrm{B}}=-45 \mathrm{~N}
$$

Find the shear force for section BC. In this region, $w=0$:

$$
\begin{aligned}
& V_{B C}(x)=-\int 0 d x=C_{2}=V_{B} \text { because if } V_{\mathrm{BC}} \text { is constant, then it must be the same as point B which we already know. } \\
& V_{B C}(x)=\frac{-w_{\max } L_{\mathrm{AB}}}{2}
\end{aligned}
$$

Find the bending moment for section AB :

$$
\begin{aligned}
& M_{A B}(x)=\int-w_{\max }\left(x-\frac{x^{2}}{2 L_{\mathrm{AB}}}\right) d x=-w_{\max }\left(\frac{x^{2}}{2}-\frac{x^{3}}{6 L_{\mathrm{AB}}}\right)+C_{3} \quad \text { But, } M \text { at point A is zero, so } C_{3}=0 \text { : } \\
& M_{A B}(x)=-w_{\max }\left(\frac{x^{2}}{2}-\frac{x^{3}}{6 L_{\mathrm{AB}}}\right)
\end{aligned}
$$

Find the M_{B} to use as a boundary for the next region: $M_{\mathrm{B}}=-w_{\max }\left(\frac{L_{\mathrm{AB}}^{2}}{2}-\frac{L_{\mathrm{AB}}{ }^{3}}{6 L_{\mathrm{AB}}}\right)=\frac{-w_{\max } L_{\mathrm{AB}}{ }^{2}}{3} \rightarrow M_{\mathrm{B}}=-90 \mathrm{Nm}$
Finding the bending moment for section BC:

$$
\begin{aligned}
& M_{B C}(x)=\int\left(\frac{-w_{\max } L_{\mathrm{AB}}}{2}\right) d x=\frac{-w_{\max } L_{\mathrm{AB}} x}{2}+C_{3} \quad \operatorname{Using} M_{B} \text { at } x=L_{\mathrm{AB}}: \\
& \frac{-w_{\max } L_{\mathrm{AB}}^{2}}{3}=\frac{-w_{\max } L_{\mathrm{AB}} L_{\mathrm{AB}}}{2}+C_{3} \rightarrow \quad C_{3}=\frac{+w_{\max } L_{\mathrm{AB}}^{2}}{6} \\
& M_{B C}(x)=\frac{-w_{\max } L_{\mathrm{AB}} x}{2}+\frac{w_{\max } L_{\mathrm{AB}}^{2}}{6} \quad M_{B C}(x)=\frac{w_{\max } L_{\mathrm{AB}}}{6}\left(L_{\mathrm{AB}}-3 x\right)
\end{aligned}
$$

The shear and bending moment diagrams are shown:

