

Restrictions:

$C \geq 500 \mathrm{pF}=500 \times 10^{-12} \mathrm{~F}$
$R_{\mathrm{A}} \geq 1 \mathrm{k} \Omega=1000 \Omega$
$R_{\mathrm{A}}+R_{\mathrm{B}} \leq 6.6 \mathrm{M} \Omega=6.6 \times 10^{6} \Omega$

Results:

$t_{1}=0.693 R_{\mathrm{B}} C$
$t_{2}=0.693\left(R_{\mathrm{A}}+R_{\mathrm{B}}\right) C$
$T=0.693\left(R_{\mathrm{A}}+2 R_{\mathrm{B}}\right) C$
$f=\frac{1}{T}=\frac{1.443}{\left(R_{A}+2 R_{B}\right) C}$

By itself, the 555 timer can never generate a pulse train with a 50% duty cycle. However, if you connect the output (pin 3) to the CLK of a JK Flip Flop operating in toggle mode, the output of the flip flop will be a pulse train having a 50% duty cycle (but with half the frequency of the 555 timer).

So, the actual $T=0.977 \mathrm{sec}$

Determining Resistor Values

Color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

Examples: Given colors A, B, and C:

Color D is usually silver or gold, and indicates how close the actual resistance will be to the expected value.

$$
R=(10 \mathrm{~A}+\mathrm{B}) \times 10^{\mathrm{C}} \Omega
$$

Blue Green Orange: $R=(10.6+5) \times 10^{3} \Omega=65000 \Omega=65 \mathrm{k} \Omega$
Blue Blue Violet: $R=(10.6+6) \times 10^{7} \Omega=660000000 \Omega=660 \mathrm{M} \Omega$
Brown Black Red: $R=(10 \cdot 1+\mathbf{0}) \times 10^{2} \Omega=1000 \Omega$

