Part of our goal is not merely to solve the ODE, but to find it! Let's find $I_{3}(t)$.

1. With the switch in the initial position, replace each capacitor with a broken wire, and each inductor with a wire. Use these results to find initial conditions for voltages across capacitors, or for currents through inductors.

In this example: $V_{1}=V_{0}, V_{2}=3 V_{0}, V_{3}=V_{4}=0$

$$
I_{2}=0, I_{1}=I_{3}=V_{0} / 4 R_{1}
$$

Goal: $\quad V_{2}(0)-V_{4}(0)=3 V_{0}$, and $I_{3}(0)=V_{0} / 4 R_{1}$
2. With the switch in the final position, replace each capacitor and inductor with a source matching step 1 . Compute the initial current through each capacitor, and voltage across each inductor! Then convert the results into initial slopes (V^{\prime} for capacitors, I^{\prime} for inductors).

In this example: $V_{1}=3 / 4 V_{0}, V_{2}={ }^{11} / 4 V_{0}, V_{3}=-1 / 4 V_{0}, V_{4}=-1 / 4 V_{0}$

$$
I_{1}=0, I_{2}=-V_{0} / 4 R_{1}
$$

$$
\text { Conotion. } \quad \text { - V/AD - CV'(O) CV'(O) }
$$

Capacitor equation: $\quad I_{2}=-V_{0} / 4 R_{1}=C V_{2}^{\prime}(0)-C V_{4}{ }^{\prime}(0)$
Inductor equation: $\quad V_{3}-0=-1 / 4 V_{0}=L I_{3}{ }^{\prime}(0)$
3. With the switch in the final position, replace each capacitor with a broken wire, and each inductor with a wire. Use these results to find final conditions for voltages across capacitors, or for currents through inductors. This step is needed whenever the ODE is non-homogeneous, so we can find the "particular" solution.

In this example: $V_{1}=V_{3}=V_{4}=0, V_{2}=2 V_{0}$

$$
I_{2}=I_{3}=0
$$

Goal: $\quad V_{2}(\infty)-V_{4}(\infty)=2 V_{0}$, and $I_{3}(\infty)=0$
4. With the switch in the final position, write the "real" equations needed to create the $2^{\text {nd }}$ order ODE for time between 0 and ∞. It's my opinion that it's easier to find an equation for current rather than voltage.

Basic equations: $V_{2}=V_{1}+2 V_{0}, V_{1}-V_{3}=4 R_{1} I_{3}, 0-V_{4}=R_{1} I_{3}$,

$$
V_{3}-0=L I_{3}^{\prime}, I_{3}=C V_{4}^{\prime}-C V_{2}^{\prime}
$$

Algebra: A general procedure might be to take first and second derivatives of every resistor equation, a first derivative of every capacitor and every inductor equation,

$$
C L I_{3}^{\prime \prime}+5 R_{1} C I_{3}^{\prime}+I_{3}=0 \quad I_{3}(0)=V_{0} / 4 R_{1} \quad I_{3}^{\prime}(0)=-V_{0} / 4 L
$$

\ldots since this equation is homogeneous for I_{3}, we didn't need step 3 !

