Name:
Given: Circuit \#1, with $v_{0}=24 \mathrm{~V}, i_{0}=1 \mathrm{~A}, R_{1}=12 \Omega$, and $R_{2}=8 \Omega$. Find: Power of each of the 4 elements.

Answers	
$p_{\mathrm{VS}}=$	W
$p_{\mathrm{CS}}=$	W
$p_{\mathrm{R} 1}=$	W
$p_{\mathrm{R} 2}=$	W

Given: Circuit \#1, with $v_{0}=12 \mathrm{~V}, i_{0}=1 \mathrm{~A}, R_{1}=8 \Omega$, and $R_{2}=12 \Omega$.
Find: Power of each of the 4 elements.

Answers	
$p_{\mathrm{VS}}=$	W
$p_{\mathrm{CS}}=$	W
$p_{\mathrm{R} 1}=$	W
$p_{\mathrm{R} 2}=$	W

Given: Circuit \#1, with $v_{0}=10 \mathrm{~V}, i_{0}=1 \mathrm{~A}, R_{1}=5 \Omega$, and $R_{2}=15 \Omega$.
Find: Power of each of the 4 elements.

Answers	
$p_{\mathrm{VS}}=$	W
$p_{\mathrm{CS}}=$	W
$p_{\mathrm{R} 1}=$	W
$p_{\mathrm{R} 2}=$	W

Given: Circuit \#2, with $v_{0}=10 \mathrm{~V}, f=3, n=7$, and $R_{2}=25 \Omega$.
Find: Power of each of the 4 elements.

Answers	
$p_{\mathrm{VS}}=$	W
$p_{\mathrm{CS}}=$	W
$p_{\mathrm{R} 1}=$	W
$p_{\mathrm{R} 2}=$	W

Given: Circuit \#2, with $v_{0}=6 \mathrm{~V}, f=5, n=3$, and $R_{2}=20 \Omega$.

Answers	
$p_{\mathrm{VS}}=$	W
$p_{\mathrm{CS}}=$	W
$p_{\mathrm{R} 1}=$	W
$p_{\mathrm{R} 2}=$	W

Answers

Given: Circuit \#2, with $v_{0}=24 \mathrm{~V}, f=4, n=12$, and $R_{2}=160 \Omega$.
Find: Power of each of the 4 elements.

$$
\begin{array}{ll}
p_{\mathrm{VS}}= & \mathrm{W} \\
p_{\mathrm{CS}}= & \mathrm{W} \\
p_{\mathrm{R} 1}= & \mathrm{W} \\
p_{\mathrm{R} 2}= & \mathrm{W}
\end{array}
$$

