Examples of Flows and their Associated Complex Potentials, following White’s *Fluid Mechanics* (5th edition)

\[z = x + iy \quad w = \phi + i\psi \quad \frac{dw}{dz} = V_x - iV_y \]

<table>
<thead>
<tr>
<th>Description</th>
<th>(\vec{V})</th>
<th>(w)</th>
<th>(\psi)</th>
<th>(\phi)</th>
</tr>
</thead>
</table>
| **Uniform flow**
See page 265, 545. | \(V_x = U, V_y = V \) | \(w = (U - iV)z \) | \(Uy - Vx \) | \(Ux + Vy \) |
| **Simple source** of strength \(m \)
m\(m = Q/(2\pi b) \)
if \(m < 0 \), it is a “sink”.
See page 265, 545. | \(V_r = m/r \)
\(V_\theta = 0 \)
origin is “singular” | \(w = m\ln(z - z_0) \) | \(m\theta \) | \(m\ln(r) \) |
| **“Irrotational” vortex** (CCW),
with center at \(z_0 \).
This vortex is fastest at its center.
Vorticity at the origin \(\to \infty \), but
is zero everywhere else.
See page 265, 546. | \(V_r = 0 \)
\(V_\theta = k/r \) | \(w = -ik\ln(z - z_0) \) | \(-k\ln(r) \) | \(k\theta \) |
| **Doublet** of strength \(\lambda \) \(\text{m}^3/\text{s} \),
located at \(z_0 \).
See page 543. | \(u = -\lambda(x^2 - y^2)/(x^2 + y^2)^2 \)
\(v = -2\lambda xy/(x^2 + y^2)^2 \) | \(w = \lambda/(z - z_0) \) | \(-\lambda\sin(\theta)/r \) | \(\lambda\cos(\theta)/r \) |
| **Stagnation Point** (corner flow), \(u>0 \) along \(y=0, x>0 \).
See page 546. | \(n \) corresponds to the angle \(\beta \) of the corner: \(\beta = 180^\circ/n=\pi/n \) | \(w = Az^n \) | \(Ar^n\sin(n\theta) \) | \(Ar^n\cos(n\theta) \) |