Name:

Date of Lab: \qquad
Lab Partner: \qquad
I. Your two resistor values: R_{1} : \qquad ohm
$R_{2}:$ \qquad ohm
II. Series Circuit:

Voltages		Currents	
$V_{\mathrm{AH}}=V_{\mathrm{A}}-V_{\mathrm{H}}$	V	I_{AB}	mA
$V_{\mathrm{AB}}=V_{\mathrm{A}}-V_{\mathrm{B}}$	V	I_{CD}	mA
$V_{\mathrm{BC}}=V_{\mathrm{B}}-V_{\mathrm{C}}$	V	I_{EF}	mA
$V_{\mathrm{CD}}=V_{\mathrm{C}}-V_{\mathrm{D}}$	V		
$V_{\mathrm{DE}}=V_{\mathrm{D}}-V_{\mathrm{E}}$	V		
$V_{\mathrm{EF}}=V_{\mathrm{E}}-V_{\mathrm{F}}$	V		
$V_{\mathrm{FG}}=V_{\mathrm{F}}-V_{\mathrm{G}}$	V		
$V_{\mathrm{GH}}=V_{\mathrm{G}}-V_{\mathrm{H}}$	V		
$V_{\mathrm{BE}}=V_{\mathrm{B}}-V_{\mathrm{E}}$	V		

III. Parallel Circuit:

Voltages		Currents	
$V_{\mathrm{AH}}=V_{\mathrm{A}}-V_{\mathrm{H}}$	V	I_{AB}	mA
$V_{\mathrm{BC}}=V_{\mathrm{B}}-V_{\mathrm{C}}$	V	I_{BD}	mA
$V_{\mathrm{DE}}=V_{\mathrm{D}}-V_{\mathrm{E}}$	V	I_{BC}	mA
$V_{\mathrm{AC}}=V_{\mathrm{A}}-V_{\mathrm{C}}$	V	I_{HG}	mA
$V_{\mathrm{EH}}=V_{\mathrm{E}}-V_{\mathrm{H}}$	V		

1. For the series circuit, what is the voltage drop across R_{1} plus the voltage drop across R_{2} ? How does this compare to the power supply voltage? Comment.
2. For the parallel circuit, what is the current in R_{1} plus the current in R_{2} ? How does this compare to the current coming directly out of the power supply $\left(I_{\mathrm{A}}\right)$? Comment.
3. For the series circuit, which resistor had the largest voltage drop: the larger resistor or the smaller one? Comment.
4. For the parallel circuit, which resistor carried the larger current: the larger resistor or the smaller one? Comment.
