Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	S		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from <i>V</i> vs. <i>t</i> graph)	8	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	S	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	S	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	S	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance la	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	s	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.

Date of Lab:

Partner: _____

Also due next week: A paper abstract. Focus only on the discharging capacitor, not charging. Submit your Excel sheet to CANVAS. Please make sure all four graphs are nicely formatted. All other calculations and data should be professional, clear, and labeled.

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω		
Time constant (from <i>V</i> vs. <i>t</i> graph)	s		
Slope of $\ln(V)$ vs t	1/s	±	±
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	±	±
Experimental capacitance	μF	±	±
Manufacturer's capacitance	μF		

Do your time constants agree with one another (within uncertainty)? Do you expect them to? Comment.

Here are some hints about how to do the data analysis for the capacitance l	ab:

		Part 1: Discharging Capacitor	Part 2: Charging Capacitor
Quantity	Unit	Value ± Uncertainty	Value ± Uncertainty
Resistor value (from ohmmeter)	Ω	No uncertainty required.	No uncertainty required.
Time constant (from V vs. t graph)	S	First find target voltage: $V_{\text{target}} = V_0/e = 0.368 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.	First find target voltage: $V_{\text{target}} = V_0 (1 - 1/e) = 0.632 V_0$ Find the time for the voltage measurement nearest to V_{target} . This is τ . No uncertainty required.
Slope of semi-log plot	1/s	From linest for $\ln(V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.	From linest for $\ln(V_0 - V)$ vs <i>t</i> . Include uncertainty recorded in presentation format.
Time constant (from $ln(V)$ vs <i>t</i> graph)	s	τ = 1/slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$	$\tau = 1$ /slope from above. Uncertainty is given by: $\Delta \tau = \frac{\tau \Delta(slope)}{slope}$
Experimental capacitance	μF	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$	Use τ from above: $C = \frac{\tau}{R}$. Convert to μ F for table. The uncertainty is: $\Delta C = \frac{C\Delta(slope)}{slope}$
Manufacturer's capacitance	μF	No uncertainty required.	No uncertainty required.