2D Center of Mass Example Problem

While building a tree house for his kids, dad builds a wall by starting with a large $1.5 \times 2.0 \mathrm{~m}$ piece of plywood. He then cuts a hole for a window. The hole is $0.50 \times 0.50 \mathrm{~m}$ square, and located as shown. To make sure he attaches it to the tree without having it be off-balance, he wants you to determine the center of mass of this wall.

Step 1: Identify the parts (see sketch above).
Step 2: Notice that for any part, the mass is proportional to the area. So, instead of using units of kg , we can use area $\left(m^{2}\right)$ for the masses of the parts.
Step 3: Compute areas and positions:
$A_{1}=b h=3.0 \mathrm{~m}^{2}$
$A_{2}=-D^{2}=-0.25 \mathrm{~m}^{2}$ (because this represents removed plywood, this area is negative!)
$A_{\text {total }}=A_{1}+A_{2}=2.75 \mathrm{~m}^{2}$
$x_{\mathrm{cm} 1}=b / 2=1.0 \mathrm{~m} \quad y_{\mathrm{cm} 1}=h / 2=0.75 \mathrm{~m}$
$x_{\mathrm{cm} 2}=L+1 / 2 D=1.50 \mathrm{~m}$
$y_{\mathrm{cm} 2}=H+1 / 2 D=1.00 \mathrm{~m}$
So $x_{C M}=\frac{1}{2.75 \mathrm{~m}^{2}}\left[(1 \mathrm{~m})\left(3 \mathrm{~m}^{2}\right)+(1.50 \mathrm{~m})\left(-0.25 \mathrm{~m}^{2}\right)\right]=x_{\mathrm{CM}}=0.955 \mathrm{~m}$
Also, $y_{C M}=\frac{1}{2.75 \mathrm{~m}^{2}}\left[(0.75 \mathrm{~m})\left(3 \mathrm{~m}^{2}\right)+(1.00 \mathrm{~m})\left(-0.25 \mathrm{~m}^{2}\right)\right]=\underline{y_{C M}=0.727 \mathrm{~m}}$

