Every Square is $2 \mathrm{~m} \times 2 \mathrm{~m}$. For example, the distance from A to B is 2 m , but the distance from A to D is 6 m .

For every letter/number pair, compute the torque exerted by force m about point n. CCW is positive, as usual. Ψ_{\square}

For example: $\tau_{\mathrm{F} 6}$ about point $\mathrm{D}=+(4 \mathrm{~N})(4 \mathrm{~m})=+16 \mathrm{~N} \cdot \mathrm{~m}$
$\tau_{\mathrm{F} 3-\mathrm{D}}=$
$\tau_{\mathrm{F} 2-\mathrm{A}}=$
$\tau_{\mathrm{F} 3-\mathrm{P}}=$
$\tau_{\mathrm{F} 4-\mathrm{M}}=$
$\tau_{\mathrm{F} 4-\mathrm{F}}=$
$\tau_{\mathrm{F} 5-\mathrm{B}}=$
$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=$
$=$

$\tau_{\mathrm{F}-}=$	$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=\ldots$	
$\tau_{\mathrm{F}-}=$	$\tau_{\mathrm{F}-}=$
$\tau_{\mathrm{F}-}=$	$\tau_{\mathrm{F}-}=$

