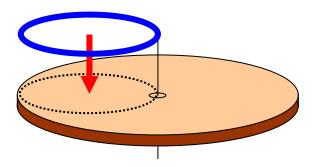

Various Energy and Angular Momentum Examples (see attached).

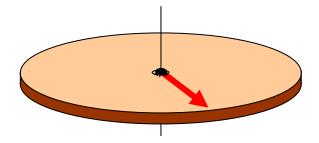
I. Small playground carousel

A small child (m = 25 kg) runs (v = 3 m/s) at a carousel such that he arrives tangentially to the outer edge (R = 2 m; $I_C = 250 \text{ kgm}^2$), and he grabs the handlebar. As a result, the carousel begins to spin. Find ω and the period T.



II. Small turntable and a ring

A small cylindrical turntable $(m_1, R_1, \omega_1 = 2 \text{ rad/s})$ is rotating freely without friction.


Then, somebody drops a small metal ring $(m_2 = \frac{1}{4}m_1, R_2 = \frac{1}{2}R_1)$ onto the turntable such that the edges are tangent.

Determine $\omega_{\bar{t}}$.

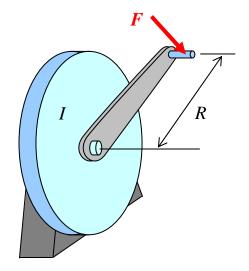
III. Bug on a turntable

A bug ($m_2 = 20 \text{ g} = 0.020 \text{ kg}$) is at the center of a cylindrical turntable ($m_1 = 0.20 \text{ kg}$, R = 10 cm = 0.10 m). The turntable is freely rotating without friction ($\omega = 0.50 \text{ rev/s} = 3.142 \text{ rad/s}$). Then, the bug decides to walk to the edge of the turntable. Determine ω_1 .

Angular Momentum Example Problem

Handle is attached to disc.

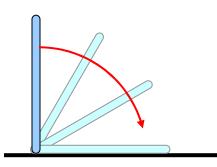
R = 30 cm = 0.3 m


F = 20 N, always perpendicular to R

 $\Delta t = 3 \text{ s}$ (time that handle is pushed)

 $I = 1.4 \text{ kgm}^2$

Starts at rest.


What is final angular velocity?

Angular Energy Example Problem

Starting at rest, a vertical stick falls down. What is the speed of the tip just before the stick hits the ground?

Given: L = 2m

