II. Large tank with a hole at the bottom:

$$
\begin{aligned}
& P_{1}=P_{a} \text { atm } \\
& P_{2}=P_{\text {atm }} \\
& d=1 \mathrm{~cm} \\
& D_{1}=1 \mathrm{~m} \\
& h_{1}=1.5 \mathrm{~m}
\end{aligned}
$$

Mass/Cantinuity: $\quad \dot{m}_{2}=\dot{m}_{1}$

$$
\begin{aligned}
& \rho A_{2} V_{2}=\rho A_{1} V_{1} \\
& \rho \frac{\pi}{4} d^{2} V_{2}=\rho \frac{\pi}{4} D^{2} V_{1} \rightarrow V_{1}=V_{2} \frac{d^{2}}{D^{2}}
\end{aligned}
$$

Bernall: : $P_{1}+\rho, g h_{1}+\frac{1}{2} \rho V_{1}^{2}=P_{2}+\rho \rho_{2} g_{2}+\frac{1}{2} \rho V_{2}^{2}$

$$
\begin{aligned}
& \rho g h_{1}+\frac{1}{2} \rho V_{1}^{2}=\frac{1}{2} \rho V_{2}^{2} \\
& g h_{1}+\frac{1}{2} V_{2}^{2} \frac{d^{4}}{\rho^{4}}=\frac{1}{2} \rho_{2}^{2} \\
& 2 g h_{1}=\frac{V_{2}^{2}\left(1-\frac{d^{4}}{1^{4}}\right)}{\left(1-\frac{d^{4}}{0^{4}}\right)}=\sqrt[5.4221767 / 2]{\left(h_{2}\right.}=\sqrt{\left(\frac{2 g}{2} / \mathrm{s}\right.}
\end{aligned}
$$

Note: $\frac{d^{4}}{d^{4}}=1 \times 10^{-8}$, so $\left(1-\frac{d^{4}}{D^{4}}\right)=0.99999999$.
So, since $d<L D$, we can ressancily, Son $V_{2}=\sqrt{2 g h_{1}}=5.422$
Resulting in
You choose, that assumes $\mathrm{v}_{1} \approx$ zero.

