Build an LED Emitter:

\[\begin{align*}
\text{+5 V} & \quad \text{100 } \Omega \\
\text{Ground} & \\
\end{align*} \]

Build a Digital Photodetector:

\[\begin{align*}
\text{+5 V} & \quad \text{10 k } \Omega \\
\text{Output} & \\
\end{align*} \]

\[
\begin{align*}
\text{+5 V} & \quad \text{NPN 222A} \\
\text{Ground} & \\
\end{align*} \]

Build a Digital Photodetector with latch and reset:

\[\begin{align*}
\text{+5 V} & \quad \text{10 k } \Omega \\
\text{Output} & \\
\end{align*} \]

\[
\begin{align*}
\text{+5 V} & \quad \text{NPN 222A} \\
\text{Ground} & \\
\end{align*} \]

\[
\begin{align*}
\text{Reset} & \\
\end{align*} \]
Analog Photodiode Detector, Version 2:

This circuit generates an output voltage as follows:

“Dark” → 5.00 volts.
“Bright” → 0.05 volts.

For this circuit, the numerical value of R_B is pretty unimportant. I’ve tested it with values between 100Ω and 10kΩ.

For this circuit, the choice of R_C affects the kind of illumination you can easily detect.

If R_C is large (e.g., 10 kΩ), then generic room lighting creates an output voltage of about 1.0 V.
If R_C is small (e.g., 1 kΩ), then generic room lighting creates an output voltage of about 4.0 V.

You should adjust R_C (possibly using a potentiometer) so that the bulk of the illumination range you want (whether darker levels than background, or brighter) occupy most of the output voltage space. So, if you want to measure differences in light that is generally pretty bright, then use a small R_C. If you want to measure differences in light that is generally pretty dark, then use a larger R_C.

Parts List:

1. Photodiodes: Mouser # 638-PD333-2C/HOL2
2. Bright Red LEDs: Mouser # 638-333-2SURCS5306
3. 100 ohm resistors: Mouser # 791-RC1/4-101JB
4. 10 kohm resistors: Mouser # 791-RC1/4-103JB
5. NPN Transistors: Mouser # 610-PN2222A
6. Alternate Photodiode: Mouser # 512-QSD2030
7. Alternate Bright LED: Mouser # 638-333-2USOC/S530-A6