Assignment \#1

1a) $\mu=34.9 \mathrm{psi}, \sigma=4.1 \mathrm{psi}$, median $=34.8 \mathrm{psi}$, count $=28, \mu_{\mathrm{s}}=0.78 \mathrm{psi}$
1b) 27 tires, using "Normdist" in Excel.
2)

3a) $\quad \mu=138.9$ minutes, $\sigma=6.0$ minutes, median $=137.7$ minutes; $\left(\mu_{s}=0.69\right.$ minutes $)$ minimum $=128.63$ minutes, maximum $=164.6$ minutes.

3b, 3c, 3d)

Time (min)	Runners
124 to 128	0
128 to 132	9
132 to 136	16
136 to 140	23
140 to 144	17
144 to 148	6
148 to 152	3
152 to 156	2
156 to 160	0

4a) " Z " $\rightarrow \mu=26$, "G" $\rightarrow \sigma=7$.
So, using NormDist in Excel:
A) $f(\mu-2 \sigma)=0.007713$
B) $f(\mu-1 \sigma)=0.034567$
C) $f(\mu-0 \sigma)=0.056992$
D) $f(\mu+1 \sigma)=0.034567$
E) $f(\mu+2 \sigma)=0.007713$

4b)
$\frac{f(\mu+1 \sigma)}{f(\mu-0 \sigma)}=0.60653066$

4c)

$$
\frac{f(\mu+2 \sigma)}{f(\mu-0 \sigma)}=0.135335283
$$

5a) The green rectangle is 2 ounces wide.
5b) μ is about 25.2 ounces
5c) The blue line is 6.4 blocks tall.
5d) Mine was 2.8 inches tall (or 7.11 cm). When I multiplied by 0.6065 from the previous problem, this became 1.698 inches (or 4.29 cm). So, $x_{1} \approx 18.8$ ounces, and $x_{2} \approx 31.6$ ounces.

e) $\sigma \approx x_{2}-\mu=6.4$ ounces, $\sigma \approx \mu-x_{1}=6.4$ ounces, $\sigma \approx x_{2}-x_{1}=6.4$ ounces

The last is the best because it has the least measurement error.
f) There are 50 blocks.
g) i. $\quad p($ between 30 and 40$) \approx 23 \%$
ii. $\quad p($ between 0 and 50$)=100 \%$
iii. $\quad p$ (between μ and $\mu+\sigma$) $\approx 1 / 268 \%=34 \%$ by definition! (about 17 blocks)
iv. $p($ between $\mu-\sigma$ and $\mu+\sigma$) $\approx 68 \%$ by definition! (about 34 blocks)
v. p (between $\mu-2 \sigma$ and $\mu+2 \sigma$) $\approx 95 \%$ by definition! (about 48 blocks)
vi. $\quad p$ (between μ and 50) $=50 \%$ by definition! (about 25 blocks)
h) The units of $f(x)$ are $1 /$ ounces.
j) (2 ounces $) \times(1$ block height $) \times 50$ blocks $=1.00 \quad \rightarrow \quad 1$ block height $=0.01$ over oz.
k) $(0.01$ per oz. $) \times 6.4$ blocks $=0.064$ per ounces is max height of blue line.
m) 7 blocks tall must be 0.070 per ounces tall for the total size of this plot.

Assignment \#2

1a)

$$
\mu=0.429, \sigma=0.504, \text { and } \sigma_{\mathrm{m}}=0.095
$$

1b)

$$
\mu=0.338, \sigma=0.477, \text { and } \sigma_{\mathrm{m}}=0.056
$$

2a)
Farm Profits dependence on Rainfall

Slope $=32.378$ dollars per inch of rainfall. Intercept $=-284.35$ dollars

Year	Annual Rainfall \boldsymbol{x} (inches)	Profit per acre \boldsymbol{y} $(\$)$	$(\boldsymbol{x}-\boldsymbol{\mu})$ \times $(\boldsymbol{y}-\boldsymbol{\mu})$
2010	33	768	-1.59
2011	36	827	183.78
2012	28	575	915.05
2013	34	820	64.96
2014	35	874	240.23
2015	30	651	319.96
2016	31	783	-17.40
2017	34	845	99.05
2018	29	683	324.96
2019	37	910	600.60
2020	32	760	7.87
μ	32.6364	772.364	
σ	2.9077	100.874	

2b) Linest in Excel:

Linest:	
32.37849	-284.3526882
4.152712	136.0175169

Slope $=(32.38 \pm 4.15)$ dollars per inch of rainfall. Intercept $=(-284 \pm 136)$ dollars

2c) There are $N=11$ data points. \quad covariance $=248.86$
The "sample correlation coefficient" is $\rho=\frac{\text { cov }}{\sigma_{x} \sigma_{y}}=\frac{248.86}{(2.9077)(100.874)} \quad=\rho=0.848$
2d) Pearson's Correlation Coefficient Since $R^{2}=0.871, R=0.933$.
2e) 87.1% of farm profits can be "explained" by the rainfall measurements.
2f) The best-fit we found was $y=(32.378 x)-284.35$. So, when profit $y=0$, we find that
$x=+284.35 / 32.378=8.78 \quad \rightarrow \quad 8.78$ inches of rain corresponds to no profit!
2 g) This question asks us to use the best fit, with $x=31$ inches.

$$
y=(32.378)(31)-284.35=\quad \$ 719.38 \$ \text { per acre expected. }
$$

3a) Slope $=(0.0269 \pm 0.0035)$ inches of rainfall per $\$$
Intercept $=(11.858 \pm 2.68)$ inches of rainfall
3b, 3c)

$$
\begin{aligned}
& \rho=0.848 \\
& R^{2}=0.871 \\
& R=0.933
\end{aligned}
$$

3d) Since $y=(0.0269 x)+11.858$, when $x=0, \quad y=11.858$ inches of rainfall for no profit.
3e) For no profit, since one answer was (8.8 ± 4.3) inches of rain, and the other was (11.9 ± 2.7) inches of rain, then these two results "overlap" between (9.2 inches) and (13.1 inches), a range of almost 4 inches. In other words, there is a lot of overlap between the two results, so they agree pretty well with each other.

3f) If $m_{2}=(0.0269 \pm 0.0035)$ inches per $\$$, then $q=1 / m_{1}=q=37.17$ ($\$$ per inch of rainfall).
3 g) Since the first analysis said that each extra inch of rainfall resulted in an increase of about $\$(32.38 \pm 4.15)$ of profit, and the second method instead said it was $\$(37.17 \pm 4.80)$ of profit, then these two ranges overlap between and $\$ 32.37$ and $\$ 36.53$. Since we have both analyses, maybe our best guess for the impact of an extra inch of rainfall is in the middle of this range, or around $\$ 34.45$ per inch of rainfall.

4a) $\mu=85.0 \mathrm{k} \$$, and $\sigma=25.0 \mathrm{k} \$$
95% confidence: salary is about $(85 \pm 50) \mathrm{k} \$$
4b) $\mu=258.57 \mathrm{k} \$$, and $\sigma=459.79 \mathrm{k} \$$
95% confidence: salary is about $(259 \pm 919) \mathrm{k} \$$
c) None of the first six employees make $200 \mathrm{k} \$$.

Employee	Salary $(\mathbf{k \$})$
1	66
2	123
3	57
4	88
5	104
6	72

d) Still none of them make that much!
e) While the first six employees may have represented a typical sample, after the CEO entered, the group of 7 is not a "normal" distribution. For the first six, the average was 85 and the median was 80 , so those two values agreed pretty well. But when the CEO entered, the average changed to 259 , and the median hardly changed at all (it became 88). These two values are quite different. That's good evidence that this is not a "normal" distribution.
f) If we want a 95% confidence range, we expect $(85 \pm 50) \mathrm{k} \$$, or between $35 \mathrm{k} \$$ and $135 \mathrm{k} \$$

Assignment \#3

1a) A is 46% less than B when B is 85% more than A.
2) (gone)
3) $x_{\text {initial }}=0.02$, then has an increase of $400 \% . x_{\text {final }}=0.10, y_{\text {initial }}=0.98, y_{\text {final }}=0.90$.

Percent change of remaining population " y " is -8.16%.
4) $x_{i}=0.003$, then has an increase of $500 \% . x_{\mathrm{f}}=0.018, y_{\mathrm{i}}=0.997, y_{\mathrm{f}}=0.982$.

Percent change of remaining population is -0.14955%.
5) $\mathrm{h} \mu=8 \mathrm{~cm}$, and $\sigma=3 \mathrm{~cm}$. Sample of $n=64$ worms have an average length $\mu_{\text {test }}=9.2 \mathrm{~cm}$.
I. We expect that $\sigma_{m, \text { test }}=\frac{\sigma}{\sqrt{n}}=\frac{3}{\sqrt{64}}=0.375 \mathrm{~cm}$
II. $D=9.2 \mathrm{~cm}-8 \mathrm{~cm}=1.2 \mathrm{~cm}$
III. $\quad z=D / \sigma_{\mathrm{m}, \text { test }}=(1.2 \mathrm{~cm}) /(0.375 \mathrm{~cm})=3.2$
IV. $\quad x=\mu+z \sigma$, so $x=(8 \mathrm{~cm})+(3.2)(3 \mathrm{~cm})=17.6 \mathrm{~cm}$
$f(x)=0.000795$, and $p_{\text {under }}(x)=0.999313=99.9313 \%$
V. $\quad \alpha=\left(1-p_{\text {under }}(x)\right)=0.000687$ (or 0.0687%)
VI. Since $\alpha<5 \%$, it is unlikely that this sample is "the same" as the "regular" population.
VII. Hypothesis is that her worms have a "true" length of 10 cm .
$D_{\text {hypoth }}=(9.2-10)=-0.8 ; z_{\text {hypoth }}=-0.8 / 0.375=-2.1333 ;$
$x_{\text {hypoth }}=\mu_{\text {hypoth }}+z_{\text {hypoth }} \sigma$, so $x_{\text {hypoth }}=(10 \mathrm{~cm})+(-2.1333)(3 \mathrm{~cm})=3.6 \mathrm{~cm}$
$f\left(x_{\text {hypoth }}\right)=0.013662$, and $p_{\text {under }}\left(x_{\text {hypoth }}\right)=0.016449=1.64487 \%$
$\beta=\left(1-p_{\text {under }}\left(x_{\text {hypoth }}\right)\right)=0.983551$ (or $\left.98.355 \%\right)$
VIII. Power $=1-\beta=$ power $=0.016449$
6) $\mu=8 \mathrm{~cm}$, and $\sigma=3 \mathrm{~cm}$.

6a) Our sample of $n=100$ worms have an average length $\mu_{\text {test }}=9.344 \mathrm{~cm}$.
6b)
I. We expect that $\sigma_{m, \text { test }}=\frac{\sigma}{\sqrt{n}}=\frac{3}{\sqrt{100}}=0.300 \mathrm{~cm}$
II. $\quad D=9.344 \mathrm{~cm}-8 \mathrm{~cm}=1.344 \mathrm{~cm}$
III. $\quad z=D / \sigma_{\mathrm{m}, \text { test }}=(1.344 \mathrm{~cm}) /(0.3 \mathrm{~cm})=4.48$
IV. $\quad x=\mu+z \sigma$, so $x=(8 \mathrm{~cm})+(4.48)(3 \mathrm{~cm})=21.44 \mathrm{~cm}$
$f(x)=0.00000583$, and $p_{\text {under }}(x)=0.999996=99.996 \%$
V. $\quad \alpha=\left(1-p_{\text {under }}(x)\right)=0.00000373$ (or 0.000373%)
VI. Since $\alpha<5 \%$, it is unlikely that this sample is "the same" as the "regular" population.
VII. Hypothesis is that her worms have a "true" length of 10 cm .
$D_{\text {hypoth }}=(9.344-10)=-0.656 ; z_{\text {hypoth }}=-0.656 / 0.300=-2.18667 ;$

$$
\begin{array}{ll}
& x_{\text {hypoth }}=\mu_{\text {hypoth }}+z_{\text {hypoth }} \sigma, \text { so } x_{\text {hypoth }}=(10 \mathrm{~cm})+(-2.18667)(3 \mathrm{~cm})=3.44 \mathrm{~cm} \\
& f\left(x_{\text {hypoth }}\right)=0.012176, \text { and } p_{\text {under }}\left(x_{\text {hypoth }}\right)=0.014383=1.4383 \% \\
& \beta=\left(1-p_{\text {under }}\left(x_{\text {hypoth }}\right)\right)=0.9856117(\text { or } 98.56 \%) \\
\text { VIII. } & \text { Power }=1-\beta=\text { power }=0.014383
\end{array}
$$

7a) For 100 coins, the prob. of getting exactly 50 heads is 7.959%
7 b) For 100 coins, the prob. of getting exactly 45 heads is 4.847%
8a) For 30 candies having 6 colors, the prob. of getting exactly 3 reds is 13.68%
8b) For 30 candies having 6 colors, the prob. of getting exactly 5 blues is 19.21%
9a) The average handful is 8.6 The prob. of getting 8 SugarBombs is 13.66%.
9 b) The probability of getting 8 SugarBombs is 10.34%.
9c) The probability of getting 10 SugarBombs is 11.23%.

10a) The average leopard has 18 spots. The prob. of getting 18 spots is 9.36%.
10 b) The probability of getting 18 or fewer spots is 56.22%.

