Christopher Leary

SUNY Distinguished Teaching Professor of Mathematics
South Hall 324D

Chris Leary has been a member of the Geneseo faculty since 1992.


Curriculum Vitae


  • B.A., Oberlin College; 1979

  • Ph.D., University of Michigan; 1985


  • SUNY Geneseo 1992-current

  • United States Agency for International Development (2017-2018)

  • Eberhard Karls Universität Tübingen, Germany (2005–2006)

  • The University of Calgary (1998)

  • Stetson University (1991-1992)

  • Oberlin College (1985-1991)


  • A Friendly Introduction to Mathematical Logic (2nd Edition) (with Lars Kristiansen), (2015), Milne Library, Geneseo NY. Available at…

  • Fractals, average distance, and the Cantor set (with Dennis Ruppe and Gregg Hartvigsen), Fractals, vol. 18, no. 3 (2010), pp. 327-341.

  • Component averages in subgraphs of circulant-like graphs (with Jaqueline M. Dresch, Niels C. Hansen, Gregg Hartvigsen and Anthony J. Macula), Bulletin of the Institute for Combinatorics and its Application, vol. 51 (2007), pp. 55-68.

  • Tuning Degree Distributions: Departing from scale-free networks (with Hans-Peter Duerr, Markus Schwehm and Martin Eichner), Physica A: Statistical Mechanics and its Applications, vol. 382 (2007), pp. 731?738.

  • The impact of contact structure on infectious disease control: influenza and antiviral agents. (with Hans-Peter Duerr, Markus Schwehm, SJ DeVlas and Martin Eichner), Epidemiology and Infection, vol. 135, no. 07, (2007), pp.1124-1132.

  • Network structure, population size, and vaccination strategy and effort interact to affect the dynamics of influenza epidemics (with Gregg Hartvigsen, Jacqueline Dresch, Amy Zielinski, and Anthony Macula), The Journal of Theoretical Biology, vol. 246 (2007), pp. 205?215.

  • High infection rates at low transmission potentials in West African onchocerciasis (with Hans-Peter Duerr and Martin Eichner), International Journal for Parasitology, vol. 36, no. 13 (2006), pp. 1367-1372.

  • Filter games on omega and the dual ideal (with Claude Laflamme), Fundamenta Mathematicae, vol. 173, no. 2 (2002), pp. 159?173.

  • The structure of pleasant ideals. Notre Dame Journal of Formal Logic. 1994;35(2):292-98.

  • Pleasant ideals. Notre Dame Journal of Formal Logic. 1991;32(4):612-17.

  • Patching ideal families on P-kappa-lambda. Archive for Mathematical Logic. 1990;30(4):269-75.

  • Patching ideal families and enforcing reflection. J. Symbolic Logic. 1989; 54: 26–37.

  • Latin square achievement games (with Frank Harary). J. Recreational Mathematics. 1983-1984; 16(4): 241–246.

Research Interests

My research training was in the areas of set theory and logic. In particular, I have published papers dealing with infinitary combinatorics and large cardinals. More recently I have become interested in modeling and applications of mathematics to biology. I have also been fortunate enough to work with members of the Institut für Medizinische Biometrie at the University of Tübingen.


  • MATH 221: Calculus I

    Topics studied are limits and continuity; derivatives and antiderivatives of the algebraic, exponential, logarithmic, trigonometric, and inverse functions; the definite integral; and the fundamental theorem of the calculus.

  • MATH 223: Calculus III

    Vector calculus, functions of several variables, partial derivatives, multiple integrals, space analytic geometry, and line integrals.

  • MATH 360: Probability

    Topics include probability definitions and theorems; discrete and continuous random variables including the binomial, hypergeometric, Poisson and normal random variables. Both the theory and applications of probability will be included.